JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Short Association Fibres of the Insula-Temporoparietal Junction in Early Psychosis: A Diffusion Tensor Imaging Study.
PLoS ONE
PUBLISHED: 01-01-2014
Evidence shows that there are reductions in gray matter volume (GMV) and changes in long association white matter fibres within the left insula-temporoparietal junction (TPJ) during the early stages of psychotic disorders but less is known about short association fibres (sAFs). In this study we sought to characterise the changes in sAFs and associated volumetric changes of the left insula-TPJ during the early stages of psychosis. Magnetic resonance imaging was obtained from a sample of young people with psychosis (n?=?42) and healthy controls (n?=?45), and cortical parcellations of the left insula-TPJ were used as seeding masks to reconstruct 13 sAFs. Compared to healthy counterparts, the psychosis group showed significant reductions in fractional anisotropy (FA) in the sAFs connecting the superior (STG) and middle temporal gyri (MTG) and as well as reduced GMV within the inferior temporal gyrus and increased white matter volume (WMV) within Heschl's gyrus (HG). Furthermore, adolescent-onset psychosis subjects (onset 18 year or earlier) showed FA reductions in the STG-HG sAF when compared to adult-onset subjects, but this was not associated with changes in GMV nor WMV of the STG or HG. These findings suggest that during the early stages of psychosis, changes in sAFs and associated cortical GMV and WMV appear to occur independently, however age of onset of a psychotic syndrome/disorder influences the pattern of neuroanatomical abnormalities.
Authors: Hans-Peter Müller, Jan Kassubek.
Published: 07-28-2013
ABSTRACT
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
22 Related JoVE Articles!
Play Button
Handwriting Analysis Indicates Spontaneous Dyskinesias in Neuroleptic Naïve Adolescents at High Risk for Psychosis
Authors: Derek J. Dean, Hans-Leo Teulings, Michael Caligiuri, Vijay A. Mittal.
Institutions: University of Colorado Boulder, NeuroScript LLC, University of California, San Diego.
Growing evidence suggests that movement abnormalities are a core feature of psychosis. One marker of movement abnormality, dyskinesia, is a result of impaired neuromodulation of dopamine in fronto-striatal pathways. The traditional methods for identifying movement abnormalities include observer-based reports and force stability gauges. The drawbacks of these methods are long training times for raters, experimenter bias, large site differences in instrumental apparatus, and suboptimal reliability. Taking these drawbacks into account has guided the development of better standardized and more efficient procedures to examine movement abnormalities through handwriting analysis software and tablet. Individuals at risk for psychosis showed significantly more dysfluent pen movements (a proximal measure for dyskinesia) in a handwriting task. Handwriting kinematics offers a great advance over previous methods of assessing dyskinesia, which could clearly be beneficial for understanding the etiology of psychosis.
Behavior, Issue 81, Schizophrenia, Disorders with Psychotic Features, Psychology, Clinical, Psychopathology, behavioral sciences, Movement abnormalities, Ultra High Risk, psychosis, handwriting, computer tablet, dyskinesia
50852
Play Button
An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
Authors: Michelle Keightley, Stephanie Green, Nick Reed, Sabrina Agnihotri, Amy Wilkinson, Nancy Lobaugh.
Institutions: University of Toronto, University of Toronto, University of Toronto, Bloorview Kids Rehab, Toronto Rehab, Sunnybrook Health Sciences Centre, University of Toronto.
One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI)1. Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities2. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown2, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will: 1.Evaluate the immediate effects of head trauma in youth 2.Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery 3.Utilize new methods to verify brain injury and recovery To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation 3 - 5. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury 6. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.
Medicine, Issue 47, Mild traumatic brain injury, concussion, fMRI, youth, Head Impact Telemetry System
2226
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Assessment of Age-related Changes in Cognitive Functions Using EmoCogMeter, a Novel Tablet-computer Based Approach
Authors: Philipp Fuge, Simone Grimm, Anne Weigand, Yan Fan, Matti Gärtner, Melanie Feeser, Malek Bajbouj.
Institutions: Freie Universität Berlin, Charité Berlin, Freie Universität Berlin, Psychiatric University Hospital Zurich.
The main goal of this study was to assess the usability of a tablet-computer-based application (EmoCogMeter) in investigating the effects of age on cognitive functions across the lifespan in a sample of 378 healthy subjects (age range 18-89 years). Consistent with previous findings we found an age-related cognitive decline across a wide range of neuropsychological domains (memory, attention, executive functions), thereby proving the usability of our tablet-based application. Regardless of prior computer experience, subjects of all age groups were able to perform the tasks without instruction or feedback from an experimenter. Increased motivation and compliance proved to be beneficial for task performance, thereby potentially increasing the validity of the results. Our promising findings underline the great clinical and practical potential of a tablet-based application for detection and monitoring of cognitive dysfunction.
Behavior, Issue 84, Neuropsychological Testing, cognitive decline, age, tablet-computer, memory, attention, executive functions
50942
Play Button
A Comprehensive Protocol for Manual Segmentation of the Medial Temporal Lobe Structures
Authors: Matthew Moore, Yifan Hu, Sarah Woo, Dylan O'Hearn, Alexandru D. Iordan, Sanda Dolcos, Florin Dolcos.
Institutions: University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign.
The present paper describes a comprehensive protocol for manual tracing of the set of brain regions comprising the medial temporal lobe (MTL): amygdala, hippocampus, and the associated parahippocampal regions (perirhinal, entorhinal, and parahippocampal proper). Unlike most other tracing protocols available, typically focusing on certain MTL areas (e.g., amygdala and/or hippocampus), the integrative perspective adopted by the present tracing guidelines allows for clear localization of all MTL subregions. By integrating information from a variety of sources, including extant tracing protocols separately targeting various MTL structures, histological reports, and brain atlases, and with the complement of illustrative visual materials, the present protocol provides an accurate, intuitive, and convenient guide for understanding the MTL anatomy. The need for such tracing guidelines is also emphasized by illustrating possible differences between automatic and manual segmentation protocols. This knowledge can be applied toward research involving not only structural MRI investigations but also structural-functional colocalization and fMRI signal extraction from anatomically defined ROIs, in healthy and clinical groups alike.
Neuroscience, Issue 89, Anatomy, Segmentation, Medial Temporal Lobe, MRI, Manual Tracing, Amygdala, Hippocampus, Perirhinal Cortex, Entorhinal Cortex, Parahippocampal Cortex
50991
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
51405
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Transcranial Magnetic Stimulation for Investigating Causal Brain-behavioral Relationships and their Time Course
Authors: Magdalena W. Sliwinska, Sylvia Vitello, Joseph T. Devlin.
Institutions: University College London.
Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived “virtual lesion.” Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading.
Behavior, Issue 89, Transcranial magnetic stimulation, virtual lesion, chronometric, cognition, brain, behavior
51735
Play Button
3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
Authors: Alexandre F. DaSilva, Thiago D. Nascimento, Tiffany Love, Marcos F. DosSantos, Ilkka K. Martikainen, Chelsea M. Cummiford, Misty DeBoer, Sarah R. Lucas, MaryCatherine A. Bender, Robert A. Koeppe, Theodore Hall, Sean Petty, Eric Maslowski, Yolanda R. Smith, Jon-Kar Zubieta.
Institutions: University of Michigan School of Dentistry, University of Michigan School of Dentistry, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
A growing body of research, generated primarily from MRI-based studies, shows that migraine appears to occur, and possibly endure, due to the alteration of specific neural processes in the central nervous system. However, information is lacking on the molecular impact of these changes, especially on the endogenous opioid system during migraine headaches, and neuronavigation through these changes has never been done. This study aimed to investigate, using a novel 3D immersive and interactive neuronavigation (3D-IIN) approach, the endogenous µ-opioid transmission in the brain during a migraine headache attack in vivo. This is arguably one of the most central neuromechanisms associated with pain regulation, affecting multiple elements of the pain experience and analgesia. A 36 year-old female, who has been suffering with migraine for 10 years, was scanned in the typical headache (ictal) and nonheadache (interictal) migraine phases using Positron Emission Tomography (PET) with the selective radiotracer [11C]carfentanil, which allowed us to measure µ-opioid receptor availability in the brain (non-displaceable binding potential - µOR BPND). The short-life radiotracer was produced by a cyclotron and chemical synthesis apparatus on campus located in close proximity to the imaging facility. Both PET scans, interictal and ictal, were scheduled during separate mid-late follicular phases of the patient's menstrual cycle. During the ictal PET session her spontaneous headache attack reached severe intensity levels; progressing to nausea and vomiting at the end of the scan session. There were reductions in µOR BPND in the pain-modulatory regions of the endogenous µ-opioid system during the ictal phase, including the cingulate cortex, nucleus accumbens (NAcc), thalamus (Thal), and periaqueductal gray matter (PAG); indicating that µORs were already occupied by endogenous opioids released in response to the ongoing pain. To our knowledge, this is the first time that changes in µOR BPND during a migraine headache attack have been neuronavigated using a novel 3D approach. This method allows for interactive research and educational exploration of a migraine attack in an actual patient's neuroimaging dataset.
Medicine, Issue 88, μ-opioid, opiate, migraine, headache, pain, Positron Emission Tomography, molecular neuroimaging, 3D, neuronavigation
50682
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
50638
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
Registered Bioimaging of Nanomaterials for Diagnostic and Therapeutic Monitoring
Authors: Michael Boska, Yutong Liu, Mariano Uberti, Balarininvasa R. Sajja, Shantanu Balkundi, JoEllyn McMillan, Howard E. Gendelman.
Institutions: University of Nebraska Medical Center, University of Nebraska Medical Center.
Nanomedications can be carried by blood borne monocyte-macrophages into the reticuloendothelial system (RES; spleen, liver, lymph nodes) and to end organs. The latter include the lung, RES, and brain and are operative during human immunodeficiency virus type one (HIV-1) infection. Macrophage entry into tissues is notable in areas of active HIV-1 replication and sites of inflammation. In order to assess the potential of macrophages as nanocarriers, superparamagnetic iron-oxide and/or drug laden particles coated with surfactants were parenterally injected into HIV-1 encephalitic mice. This was done to quantitatively assess particle and drug biodistribution. Magnetic resonance imaging (MRI) test results were validated by histological coregistration and enhanced image processing. End organ disease as typified by altered brain histology were assessed by MRI. The demonstration of robust migration of nanoformulations into areas of focal encephalitis provides '"proof of concept" for the use of advanced bioimaging techniques to monitor macrophage migration. Importantly, histopathological aberrations in brain correlate with bioimaging parameters making the general utility of MRI in studies of cell distribution in disease feasible. We posit that using such methods can provide a real time index of disease burden and therapeutic efficacy with translational potential to humans.
Infectious Disease, Issue 46, neuroimaging, mouse, magnetic resonance imaging, magnetic resonance spectroscopy
2459
Play Button
An in vivo Rodent Model of Contraction-induced Injury and Non-invasive Monitoring of Recovery
Authors: Richard M. Lovering, Joseph A. Roche, Mariah H. Goodall, Brett B. Clark, Alan McMillan.
Institutions: University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine.
Muscle strains are one of the most common complaints treated by physicians. A muscle injury is typically diagnosed from the patient history and physical exam alone, however the clinical presentation can vary greatly depending on the extent of injury, the patient's pain tolerance, etc. In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Biological markers, such as serum creatine kinase levels, are typically elevated with muscle injury, but their levels do not always correlate with the loss of force production. This is even true of histological findings from animals, which provide a "direct measure" of damage, but do not account for all the loss of function. Some have argued that the most comprehensive measure of the overall health of the muscle in contractile force. Because muscle injury is a random event that occurs under a variety of biomechanical conditions, it is difficult to study. Here, we describe an in vivo animal model to measure torque and to produce a reliable muscle injury. We also describe our model for measurement of force from an isolated muscle in situ. Furthermore, we describe our small animal MRI procedure.
Medicine, Issue 51, Skeletal muscle, lengthening contraction, injury, regeneration, contractile function, torque
2782
Play Button
DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
Authors: Ardian Hana, Andreas Husch, Vimal Raj Nitish Gunness, Christophe Berthold, Anisa Hana, Georges Dooms, Hans Boecher Schwarz, Frank Hertel.
Institutions: Centre Hospitalier de Luxembourg, University of Applied Sciences Trier, Erasmus Universiteit Rotterdam, Centre Hospitalier de Luxembourg.
DTI is a technique that identifies white matter tracts (WMT) non-invasively in healthy and non-healthy patients using diffusion measurements. Similar to visual pathways (VP), WMT are not visible with classical MRI or intra-operatively with microscope. DTI will help neurosurgeons to prevent destruction of the VP while removing lesions adjacent to this WMT. We have performed DTI on fifty patients before and after surgery between March 2012 to January 2014. To navigate we used a 3DT1-weighted sequence. Additionally, we performed a T2-weighted and DTI-sequences. The parameters used were, FOV: 200 x 200 mm, slice thickness: 2 mm, and acquisition matrix: 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. Axial MRI was carried out using a 32 gradient direction and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2 and b-value of 800 s/mm². The scanning time was less than 9 min. The DTI-data obtained were processed using a FDA approved surgical navigation system program which uses a straightforward fiber-tracking approach known as fiber assignment by continuous tracking (FACT). This is based on the propagation of lines between regions of interest (ROI) which is defined by a physician. A maximum angle of 50, FA start value of 0.10 and ADC stop value of 0.20 mm²/s were the parameters used for tractography. There are some limitations to this technique. The limited acquisition time frame enforces trade-offs in the image quality. Another important point not to be neglected is the brain shift during surgery. As for the latter intra-operative MRI might be helpful. Furthermore the risk of false positive or false negative tracts needs to be taken into account which might compromise the final results.
Medicine, Issue 90, Neurosurgery, brain, visual pathway, white matter tracts, visual cortex, optic chiasm, glioblastoma, meningioma, metastasis
51946
Play Button
Mapping the After-effects of Theta Burst Stimulation on the Human Auditory Cortex with Functional Imaging
Authors: Jamila Andoh, Robert J. Zatorre.
Institutions: McGill University .
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders.
Neuroscience, Issue 67, Physiology, Physics, Theta burst stimulation, functional magnetic resonance imaging, MRI, auditory cortex, frameless stereotaxy, sound, transcranial magnetic stimulation
3985
Play Button
P50 Sensory Gating in Infants
Authors: Anne Spencer Ross, Sharon Kay Hunter, Mark A Groth, Randal Glenn Ross.
Institutions: University of Colorado School of Medicine, Colorado State University.
Attentional deficits are common in a variety of neuropsychiatric disorders including attention deficit-hyperactivity disorder, autism, bipolar mood disorder, and schizophrenia. There has been increasing interest in the neurodevelopmental components of these attentional deficits; neurodevelopmental meaning that while the deficits become clinically prominent in childhood or adulthood, the deficits are the results of problems in brain development that begin in infancy or even prenatally. Despite this interest, there are few methods for assessing attention very early in infancy. This report focuses on one method, infant auditory P50 sensory gating. Attention has several components. One of the earliest components of attention, termed sensory gating, allows the brain to tune out repetitive, noninformative sensory information. Auditory P50 sensory gating refers to one task designed to measure sensory gating using changes in EEG. When identical auditory stimuli are presented 500 ms apart, the evoked response (change in the EEG associated with the processing of the click) to the second stimulus is generally reduced relative to the response to the first stimulus (i.e. the response is "gated"). When response to the second stimulus is not reduced, this is considered a poor sensory gating, is reflective of impaired cerebral inhibition, and is correlated with attentional deficits. Because the auditory P50 sensory gating task is passive, it is of potential utility in the study of young infants and may provide a window into the developmental time course of attentional deficits in a variety of neuropsychiatric disorders. The goal of this presentation is to describe the methodology for assessing infant auditory P50 sensory gating, a methodology adapted from those used in studies of adult populations.
Behavior, Issue 82, Child Development, Psychophysiology, Attention Deficit and Disruptive Behavior Disorders, Evoked Potentials, Auditory, auditory evoked potential, sensory gating, infant, attention, electrophysiology, infants, sensory gating, endophenotype, attention, P50
50065
Play Button
Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations
Authors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia A. Trayanova.
Institutions: Johns Hopkins University.
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Bioengineering, Issue 71, Biomedical Engineering, Medicine, Anatomy, Physiology, Cardiology, Myocytes, Cardiac, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, MRI, Diffusion Magnetic Resonance Imaging, Cardiac Electrophysiology, computerized simulation (general), mathematical modeling (systems analysis), Cardiomyocyte, biomedical image processing, patient-specific modeling, Electrophysiology, simulation
50125
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
3178
Play Button
Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging
Authors: Jeffrey S. Phillips, Adam S. Greenberg, John A. Pyles, Sudhir K. Pathak, Marlene Behrmann, Walter Schneider, Michael J. Tarr.
Institutions: Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University , University of Pittsburgh.
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.
Neuroscience, Issue 69, Molecular Biology, Anatomy, Physiology, tractography, connectivity, neuroanatomy, white matter, magnetic resonance imaging, MRI
4125
Play Button
Real-time fMRI Biofeedback Targeting the Orbitofrontal Cortex for Contamination Anxiety
Authors: Michelle Hampson, Teodora Stoica, John Saksa, Dustin Scheinost, Maolin Qiu, Jitendra Bhawnani, Christopher Pittenger, Xenophon Papademetris, Todd Constable.
Institutions: Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine , Yale University School of Medicine .
We present a method for training subjects to control activity in a region of their orbitofrontal cortex associated with contamination anxiety using biofeedback of real-time functional magnetic resonance imaging (rt-fMRI) data. Increased activity of this region is seen in relationship with contamination anxiety both in control subjects1 and in individuals with obsessive-compulsive disorder (OCD),2 a relatively common and often debilitating psychiatric disorder involving contamination anxiety. Although many brain regions have been implicated in OCD, abnormality in the orbitofrontal cortex (OFC) is one of the most consistent findings.3, 4 Furthermore, hyperactivity in the OFC has been found to correlate with OCD symptom severity5 and decreases in hyperactivity in this region have been reported to correlate with decreased symptom severity.6 Therefore, the ability to control this brain area may translate into clinical improvements in obsessive-compulsive symptoms including contamination anxiety. Biofeedback of rt-fMRI data is a new technique in which the temporal pattern of activity in a specific region (or associated with a specific distributed pattern of brain activity) in a subject's brain is provided as a feedback signal to the subject. Recent reports indicate that people are able to develop control over the activity of specific brain areas when provided with rt-fMRI biofeedback.7-12 In particular, several studies using this technique to target brain areas involved in emotion processing have reported success in training subjects to control these regions.13-18 In several cases, rt-fMRI biofeedback training has been reported to induce cognitive, emotional, or clinical changes in subjects.8, 9, 13, 19 Here we illustrate this technique as applied to the treatment of contamination anxiety in healthy subjects. This biofeedback intervention will be a valuable basic research tool: it allows researchers to perturb brain function, measure the resulting changes in brain dynamics and relate those to changes in contamination anxiety or other behavioral measures. In addition, the establishment of this method serves as a first step towards the investigation of fMRI-based biofeedback as a therapeutic intervention for OCD. Given that approximately a quarter of patients with OCD receive little benefit from the currently available forms of treatment,20-22 and that those who do benefit rarely recover completely, new approaches for treating this population are urgently needed.
Medicine, Issue 59, Real-time fMRI, rt-fMRI, neurofeedback, biofeedback, orbitofrontal cortex, OFC, obsessive-compulsive disorder, OCD, contamination anxiety, resting connectivity
3535
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.