JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Role of neuronal NADPH oxidase 1 in the peri-infarct regions after stroke.
.
PLoS ONE
PUBLISHED: 01-25-2015
The molecular mechanism underlying the selective vulnerability of neurons to oxidative damage caused by ischemia-reperfusion (I/R) injury remains unknown. We sought to determine the role of NADPH oxidase 1 (Nox1) in cerebral I/R-induced brain injury and survival of newborn cells in the ischemic injured region. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion. After reperfusion, infarction size, level of superoxide and 8-hydroxy-2'-deoxyguanosine (8-oxo-2dG), and Nox1 immunoreactivity were determined. RNAi-mediated knockdown of Nox1 was used to investigate the role of Nox1 in I/R-induced oxidative damage, neuronal death, motor function recovery, and ischemic neurogenesis. After I/R, Nox1 expression and 8-oxo-2dG immunoreactivity was increased in cortical neurons of the peri-infarct regions. Both infarction size and neuronal death in I/R injury were significantly reduced by adeno-associated virus (AAV)-mediated transduction of Nox1 short hairpin RNA (shRNA). AAV-mediated Nox1 knockdown enhanced functional recovery after MCAO. The level of survival and differentiation of newborn cells in the peri-infarct regions were increased by Nox1 inhibition. Our data suggest that Nox-1 may be responsible for oxidative damage to DNA, subsequent cortical neuronal degeneration, functional recovery, and regulation of ischemic neurogenesis in the peri-infarct regions after stroke.
Authors: Hailong Li, Gourav Roy Choudhury, Nannan Zhang, Shinghua Ding.
Published: 07-16-2015
ABSTRACT
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy.
21 Related JoVE Articles!
Play Button
Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Authors: Stacy L. Fairbanks, Rebekah Vest, Saurabh Verma, Richard J. Traystman, Paco S. Herson.
Institutions: University of Colorado School of Medicine, Oregon Health & Science University, University of Colorado School of Medicine.
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Neuroscience, Issue 82, male, female, sex, neuronal culture, ischemia, cell death, neuroprotection
50758
Play Button
Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG
Authors: Rashna D. Balsara, Sarah E. Chapman, Ian M. Sander, Deborah L. Donahue, Lucas Liepert, Francis J. Castellino, W. Matthew Leevy.
Institutions: University of Notre Dame, University of Notre Dame, University of Notre Dame, University of Notre Dame, University of Notre Dame.
Stroke is the third leading cause of death among Americans 65 years of age or older1. The quality of life for patients who suffer from a stroke fails to return to normal in a large majority of patients2, which is mainly due to current lack of clinical treatment for acute stroke. This necessitates understanding the physiological effects of cerebral ischemia on brain tissue over time and is a major area of active research. Towards this end, experimental progress has been made using rats as a preclinical model for stroke, particularly, using non-invasive methods such as 18F-fluorodeoxyglucose (FDG) coupled with Positron Emission Tomography (PET) imaging3,10,17. Here we present a strategy for inducing cerebral ischemia in rats by middle cerebral artery occlusion (MCAO) that mimics focal cerebral ischemia in humans, and imaging its effects over 24 hr using FDG-PET coupled with X-ray computed tomography (CT) with an Albira PET-CT instrument. A VOI template atlas was subsequently fused to the cerebral rat data to enable a unbiased analysis of the brain and its sub-regions4. In addition, a method for 3D visualization of the FDG-PET-CT time course is presented. In summary, we present a detailed protocol for initiating, quantifying, and visualizing an induced ischemic stroke event in a living Sprague-Dawley rat in three dimensions using FDG-PET.
Medicine, Issue 94, PET, Positron Emission Tomography, Stroke, Cerebral Ischemia, FDG, Brain template, brain atlas, VOI analysis
51495
Play Button
Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy
Authors: Melissa J. Grimm, Anthony C. D'Auria, Brahm H. Segal.
Institutions: Roswell Park Cancer Institute, University of Buffalo.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.
Immunology, Issue 89, macrophage, bronchoalveolar lavage, Aspergillus, confocal microscopy, phagocytosis, anti-fungal activity, NADPH oxidase
51678
Play Button
Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Institutions: University Hospital Munich, Munich Cluster for Systems Neurology (SyNergy), University Heidelberg, Charing Cross Hospital.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Medicine, Issue 89, stroke, brain ischemia, animal model, middle cerebral artery, electrocoagulation
51729
Play Button
Stereological and Flow Cytometry Characterization of Leukocyte Subpopulations in Models of Transient or Permanent Cerebral Ischemia
Authors: Iván Ballesteros, María Isabel Cuartero, Ana Moraga, Juan de la Parra, Ignacio Lizasoain, María Ángeles Moro.
Institutions: Universidad Complutense de Madrid y Instituto de Investigación Hospital 12 de Octubre, Madrid.
Microglia activation, as well as extravasation of haematogenous macrophages and neutrophils, is believed to play a pivotal role in brain injury after stroke. These myeloid cell subpopulations can display different phenotypes and functions and need to be distinguished and characterized to study their regulation and contribution to tissue damage. This protocol provides two different methodologies for brain immune cell characterization: a precise stereological approach and a flow cytometric analysis. The stereological approach is based on the optical fractionator method, which calculates the total number of cells in an area of interest (infarcted brain) estimated by a systematic random sampling. The second characterization approach provides a simple way to isolate brain leukocyte suspensions and to characterize them by flow cytometry, allowing for the characterization of microglia, infiltrated monocytes and neutrophils of the ischemic tissue. In addition, it also details a cerebral ischemia model in mice that exclusively affects brain cortex, generating highly reproducible infarcts with a low rate of mortality, and the procedure for histological brain processing to characterize infarct volume by the Cavalieri method.
Medicine, Issue 94, Brain ischemia, myeloid cells, middle cerebral artery occlusion (MCAO), stereology, optical fractionator, flow cytometry, infiltration
52031
Play Button
Remote Limb Ischemic Preconditioning: A Neuroprotective Technique in Rodents
Authors: Alice Brandli.
Institutions: University of Sydney.
Sublethal ischemia protects tissues against subsequent, more severe ischemia through the upregulation of endogenous mechanisms in the affected tissue. Sublethal ischemia has also been shown to upregulate protective mechanisms in remote tissues. A brief period of ischemia (5-10 min) in the hind limb of mammals induces self-protective responses in the brain, lung, heart and retina. The effect is known as remote ischemic preconditioning (RIP). It is a therapeutically promising way of protecting vital organs, and is already under clinical trials for heart and brain injuries. This publication demonstrates a controlled, minimally invasive method of making a limb – specifically the hind limb of a rat – ischemic. A blood pressure cuff developed for use in human neonates is connected to a manual sphygmomanometer and used to apply 160 mmHg pressure around the upper part of the hind limb. A probe designed to detect skin temperature is used to verify the ischemia, by recording the drop in skin temperature caused by pressure-induced occlusion of the leg arteries, and the rise in temperature which follows release of the cuff. This method of RIP affords protection to the rat retina against bright light-induced damage and degeneration.
Medicine, Issue 100, remote ischemic preconditioning, ischemic conditioning, ischemic tolerance, light injury, neuroprotection, mediated neuroprotection, stroke, retina, electroretinogram, rat
52213
Play Button
Quantification of Neurovascular Protection Following Repetitive Hypoxic Preconditioning and Transient Middle Cerebral Artery Occlusion in Mice
Authors: Katherine Poinsatte, Uma Maheswari Selvaraj, Sterling B. Ortega, Erik J. Plautz, Xiangmei Kong, Jeffrey M. Gidday, Ann M. Stowe.
Institutions: University of Texas Southwestern Medical Center, Washington University School of Medicine.
Experimental animal models of stroke are invaluable tools for understanding stroke pathology and developing more effective treatment strategies. A 2 week protocol for repetitive hypoxic preconditioning (RHP) induces long-term protection against central nervous system (CNS) injury in a mouse model of focal ischemic stroke. RHP consists of 9 stochastic exposures to hypoxia that vary in both duration (2 or 4 hr) and intensity (8% and 11% O2). RHP reduces infarct volumes, blood-brain barrier (BBB) disruption, and the post-stroke inflammatory response for weeks following the last exposure to hypoxia, suggesting a long-term induction of an endogenous CNS-protective phenotype. The methodology for the dual quantification of infarct volume and BBB disruption is effective in assessing neurovascular protection in mice with RHP or other putative neuroprotectants. Adult male Swiss Webster mice were preconditioned by RHP or duration-equivalent exposures to 21% O2 (i.e. room air). A 60 min transient middle cerebral artery occlusion (tMCAo) was induced 2 weeks following the last hypoxic exposure. Both the occlusion and reperfusion were confirmed by transcranial laser Doppler flowmetry. Twenty-two hr after reperfusion, Evans Blue (EB) was intravenously administered through a tail vein injection. 2 hr later, animals were sacrificed by isoflurane overdose and brain sections were stained with 2,3,5- triphenyltetrazolium chloride (TTC). Infarcts volumes were then quantified. Next, EB was extracted from the tissue over 48 hr to determine BBB disruption after tMCAo. In summary, RHP is a simple protocol that can be replicated, with minimal cost, to induce long-term endogenous neurovascular protection from stroke injury in mice, with the translational potential for other CNS-based and systemic pro-inflammatory disease states.
Medicine, Issue 99, Hypoxia, preconditioning, transient middle cerebral artery occlusion, stroke, neuroprotection, blood-brain barrier disruption
52675
Play Button
Oxygen-Glucose Deprivation and Reoxygenation as an In Vitro Ischemia-Reperfusion Injury Model for Studying Blood-Brain Barrier Dysfunction
Authors: Himakarnika Alluri, Chinchusha Anasooya Shaji, Matthew L. Davis, Binu Tharakan.
Institutions: Texas A&M University Health Science Center College of Medicine, Baylor Scott & White Health.
Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals. Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity. Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.
Medicine, Issue 99, Oxygen-glucose deprivation and reoxygenation, ischemia-reperfusion injury, blood-brain barrier, brain endothelial cells, tight junctions, immunofluorescence, f-actin staining
52699
Play Button
Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke
Authors: Lora Talley Watts, Wei Zheng, R. Justin Garling, Victoria C. Frohlich, James Donald Lechleiter.
Institutions: The University of Texas Health Science Center San Antonio, The University of Texas Health Science Center San Antonio, St. Jude Children’s Research Hospital.
In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.
Medicine, Issue 100, Rose Bengal, single vessel stroke, in vivo microscopy, lacunar stroke, photothrombosis, silent stroke
52794
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
50667
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
50418
Play Button
Focal Cerebral Ischemia Model by Endovascular Suture Occlusion of the Middle Cerebral Artery in the Rat
Authors: Kutluay Uluç, Amrendra Miranpuri, Gregory C. Kujoth, Erinç Aktüre, Mustafa K. Başkaya.
Institutions: University of Wisconsin-Madison.
Stroke is the leading cause of disability and the third leading cause of death in adults worldwide1. In human stroke, there exists a highly variable clinical state; in the development of animal models of focal ischemia, however, achieving reproducibility of experimentally induced infarct volume is essential. The rat is a widely used animal model for stroke due to its relatively low animal husbandry costs and to the similarity of its cranial circulation to that of humans2,3. In humans, the middle cerebral artery (MCA) is most commonly affected in stroke syndromes and multiple methods of MCA occlusion (MCAO) have been described to mimic this clinical syndrome in animal models. Because recanalization commonly occurs following an acute stroke in the human, reperfusion after a period of occlusion has been included in many of these models. In this video, we demonstrate the transient endovascular suture MCAO model in the spontaneously hypertensive rat (SHR). A filament with a silicon tip coating is placed intraluminally at the MCA origin for 60 minutes, followed by reperfusion. Note that the optimal occlusion period may vary in other rat strains, such as Wistar or Sprague-Dawley. Several behavioral indicators of stroke in the rat are shown. Focal ischemia is confirmed using T2-weighted magnetic resonance images and by staining brain sections with 2,3,5-triphenyltetrazolium chloride (TTC) 24 hours after MCAO.
Neuroscience, Issue 48, Stroke, cerebral ischemia, middle cerebral artery occlusion, intraluminal filament, rat, magnetic resonance imaging, surgery, neuroscience, brain
1978
Play Button
Mouse Model of Middle Cerebral Artery Occlusion
Authors: Terrance Chiang, Robert O. Messing, Wen-Hai Chou.
Institutions: Ernest Gallo Clinic and Research Center, University of California, San Francisco, Kent State University.
Stroke is the most common fatal neurological disease in the United States 1. The majority of strokes (88%) result from blockage of blood vessels in the brain (ischemic stroke) 2. Since most ischemic strokes (~80%) occur in the territory of middle cerebral artery (MCA) 3, many animal stroke models that have been developed have focused on this artery. The intraluminal monofilament model of middle cerebral artery occlusion (MCAO) involves the insertion of a surgical filament into the external carotid artery and threading it forward into the internal carotid artery (ICA) until the tip occludes the origin of the MCA, resulting in a cessation of blood flow and subsequent brain infarction in the MCA territory 4. The technique can be used to model permanent or transient occlusion 5. If the suture is removed after a certain interval (30 min, 1 h, or 2 h), reperfusion is achieved (transient MCAO); if the filament is left in place (24 h) the procedure is suitable as a model of permanent MCAO. This technique does not require craniectomy, a neurosurgical procedure to remove a portion of skull, which may affect intracranial pressure and temperature 6. It has become the most frequently used method to mimic permanent and transient focal cerebral ischemia in rats and mice 7,8. To evaluate the extent of cerebral infarction, we stain brain slices with 2,3,5-triphenyltetrazolium chloride (TTC) to identify ischemic brain tissue 9. In this video, we demonstrate the MCAO method and the determination of infarct size by TTC staining.
Medicine, Issue 48, Neurology, Stroke, mice, ischemia
2761
Play Button
Intraluminal Middle Cerebral Artery Occlusion (MCAO) Model for Ischemic Stroke with Laser Doppler Flowmetry Guidance in Mice
Authors: Saeed Ansari, Hassan Azari, Douglas J. McConnell, Aqeela Afzal, J Mocco.
Institutions: University of Florida, Shiraz University of Medical Sciences.
Stroke is the third leading cause of death and the leading cause of disability in the world, with an estimated cost of near $70 billion in the United States in 20091,2. The intraluminal middle cerebral artery occlusion (MCAO) model was developed by Koizumi4 in 1986 to simulate this impactful human pathology in the rat. A modification of the MCAO method was later presented by Longa3. Both techniques have been widely used to identify molecular mechanisms of brain injury resulting from ischemic stroke and potential therapeutic modalities5. This relatively noninvasive method in rats has been extended to use in mice to take advantage of transgenic and knockout strains6,7. To model focal cerebral ischemia, an intraluminal suture is advanced via the internal carotid artery to occlude the base of the MCA. Retracting the suture after a specified period of time mimics spontaneous reperfusion, but the suture can also be permanently retained. This video will be demonstrating the two major approaches for performing intraluminal MCAO procedure in mice in a stepwise fashion, as well as providing insights for potential drawbacks and pitfalls. The ischemic brain tissue will subsequently be stained by 2,3,5-triphenyltetrazolium chloride (TTC) to evaluate the extent of cerebral infarction8.
Medicine, Issue 51, Cerebral ischemia, mouse, middle cerebral artery occlusion, intraluminal suture, Laser Doppler
2879
Play Button
Bioluminescence Imaging of NADPH Oxidase Activity in Different Animal Models
Authors: Wei Han, Hui Li, Brahm H. Segal, Timothy S. Blackwell.
Institutions: Vanderbilt University School of Medicine, Roswell Park Cancer Institute, University at Buffalo School of Medicine.
NADPH oxidase is a critical enzyme that mediates antibacterial and antifungal host defense. In addition to its role in antimicrobial host defense, NADPH oxidase has critical signaling functions that modulate the inflammatory response 1. Thus, the development of a method to measure in "real-time" the kinetics of NADPH oxidase-derived ROS generation is expected to be a valuable research tool to understand mechanisms relevant to host defense, inflammation, and injury. Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase characterized by severe infections and excessive inflammation. Activation of the phagocyte NADPH oxidase requires translocation of its cytosolic subunits (p47phox, p67phox, and p40phox) and Rac to a membrane-bound flavocytochrome (composed of a gp91phox and p22phox heterodimer). Loss of function mutations in any of these NADPH oxidase components result in CGD. Similar to patients with CGD, gp91phox -deficient mice and p47phox-deficient mice have defective phagocyte NADPH oxidase activity and impaired host defense 2, 13. In addition to phagocytes, which contain the NADPH oxidase components described above, a variety of other cell types express different isoforms of NADPH oxidase. Here, we describe a method to quantify ROS production in living mice and to delineate the contribution of NADPH oxidase to ROS generation in models of inflammation and injury. This method is based on ROS reacting with L-012 (an analogue of luminol) to emit luminescence that is recorded by a charge-coupled device (CCD). In the original description of the L-012 probe, L-012-dependent chemiluminescence was completely abolished by superoxide dismutase, indicating that the main ROS detected in this reaction was superoxide anion 14. Subsequent studies have shown that L-012 can detect other free radicals, including reactive nitrogen species 15, 16. Kielland et al. 16 showed that topical application of phorbol myristate acetate, a potent activator of NADPH oxidase, led to NADPH oxidase-dependent ROS generation that could be detected in mice using the luminescent probe L-012. In this model, they showed that L-012-dependent luminescence was abolished in p47phox-deficient mice. We compared ROS generation in wildtype mice and NADPH oxidase-deficient p47phox-/- mice 2 in the following three models: 1) intratracheal administration of zymosan, a pro-inflammatory fungal cell wall-derived product that can activate NADPH oxidase; 2) cecal ligation and puncture (CLP), a model of intra-abdominal sepsis with secondary acute lung inflammation and injury; and 3) oral carbon tetrachloride (CCl4), a model of ROS-dependent hepatic injury. These models were specifically selected to evaluate NADPH oxidase-dependent ROS generation in the context of non-infectious inflammation, polymicrobial sepsis, and toxin-induced organ injury, respectively. Comparing bioluminescence in wildtype mice to p47phox-/- mice enables us to delineate the specific contribution of ROS generated by p47phox-containing NADPH oxidase to the bioluminescent signal in these models. Bioluminescence imaging results that demonstrated increased ROS levels in wildtype mice compared to p47phox-/- mice indicated that NADPH oxidase is the major source of ROS generation in response to inflammatory stimuli. This method provides a minimally invasive approach for "real-time" monitoring of ROS generation during inflammation in vivo.
Immunology, Issue 68, Molecular Biology, NADPH oxidase, reactive oxygen species, bioluminescence imaging
3925
Play Button
Mouse Model of Intraluminal MCAO: Cerebral Infarct Evaluation by Cresyl Violet Staining
Authors: Estelle Rousselet, Jasna Kriz, Nabil G. Seidah.
Institutions: Clinical Research Institute of Montreal, Laval University.
Stroke is the third cause of mortality and the leading cause of disability in the World. Ischemic stroke accounts for approximately 80% of all strokes. However, the thrombolytic tissue plasminogen activator (tPA) is the only treatment of acute ischemic stroke that exists. This led researchers to develop several ischemic stroke models in a variety of species. Two major types of rodent models have been developed: models of global cerebral ischemia or focal cerebral ischemia. To mimic ischemic stroke in patients, in whom approximately 80% thrombotic or embolic strokes occur in the territory of the middle cerebral artery (MCA), the intraluminal middle cerebral artery occlusion (MCAO) model is quite relevant for stroke studies. This model was first developed in rats by Koizumi et al. in 1986 1. Because of the ease of genetic manipulation in mice, these models have also been developed in this species 2-3. Herein, we present the transient MCA occlusion procedure in C57/Bl6 mice. Previous studies have reported that physical properties of the occluder such as tip diameter, length, shape, and flexibility are critical for the reproducibility of the infarct volume 4. Herein, a commercial silicon coated monofilaments (Doccol Corporation) have been used. Another great advantage is that this monofilament reduces the risk to induce subarachnoid hemorrhages. Using the Zeiss stereo-microscope Stemi 2000, the silicon coated monofilament was introduced into the internal carotid artery (ICA) via a cut in the external carotid artery (ECA) until the monofilament occludes the base of the MCA. Blood flow was restored 1 hour later by removal of the monofilament to mimic the restoration of blood flow after lysis of a thromboembolic clot in humans. The extent of cerebral infarct may be evaluated first by a neurologic score and by the measurement of the infarct volume. Ischemic mice were thus analyzed for their neurologic score at different post-reperfusion times. To evaluate the infarct volume, staining with 2,3,5-triphenyltetrazolium chloride (TTC) was usually performed. Herein, we used cresyl violet staining since it offers the opportunity to test many critical markers by immunohistochemistry. In this video, we report the MCAO procedure; neurological scores and the evaluation of the infarct volume by cresyl violet staining.
Medicine, Issue 69, Neuroscience, Biochemistry, Anatomy, Physiology, transient ischemic stroke, middle cerebral artery occlusion, intraluminal model, neuroscore, cresyl violet staining, mice, imaging
4038
Play Button
Intravascular Perfusion of Carbon Black Ink Allows Reliable Visualization of Cerebral Vessels
Authors: Mohammad R. Hasan, Josephine Herz, Dirk M. Hermann, Thorsten R. Doeppner.
Institutions: University of Duisburg-Essen Medical School.
The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes1 (i.e. carmine red, India ink) or latex with2 or without3 carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen3. Maeda et al.2 have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound4. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner5. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion5. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.
Neuroscience, Issue 71, Neurobiology, Medicine, Anatomy, Physiology, Cellular Biology, Immunology, Neurology, Cerebral vascular anatomy, colored latex, carbon black, ink, stroke, vascular territories, brain, vessels, imaging, animal model
4374
Play Button
Bilateral Common Carotid Artery Occlusion as an Adequate Preconditioning Stimulus to Induce Early Ischemic Tolerance to Focal Cerebral Ischemia
Authors: Lukas Julius Speetzen, Matthias Endres, Alexander Kunz.
Institutions: Charité - Universitätsmedizin Berlin, Germany.
There is accumulating evidence, that ischemic preconditioning - a non-damaging ischemic challenge to the brain - confers a transient protection to a subsequent damaging ischemic insult. We have established bilateral common carotid artery occlusion as a preconditioning stimulus to induce early ischemic tolerance to transient focal cerebral ischemia in C57Bl6/J mice. In this video, we will demonstrate the methodology used for this study.
Medicine, Issue 75, Neurobiology, Anatomy, Physiology, Neuroscience, Immunology, Surgery, stroke, cerebral ischemia, ischemic preconditioning, ischemic tolerance, IT, ischemic stroke, middle cerebral artery occlusion, MCAO, bilateral common carotid artery occlusion, BCCAO, brain, ischemia, occlusion, reperfusion, mice, animal model, surgical techniques
4387
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
50173
Play Button
Optimized System for Cerebral Perfusion Monitoring in the Rat Stroke Model of Intraluminal Middle Cerebral Artery Occlusion
Authors: Simone Beretta, Matteo Riva, Davide Carone, Elisa Cuccione, Giada Padovano, Virginia Rodriguez Menendez, Giovanni B. Pappadá, Alessandro Versace, Carlo Giussani, Erik P. Sganzerla, Carlo Ferrarese.
Institutions: University of Milano Bicocca.
The translational potential of pre-clinical stroke research depends on the accuracy of experimental modeling. Cerebral perfusion monitoring in animal models of acute ischemic stroke allows to confirm successful arterial occlusion and exclude subarachnoid hemorrhage. Cerebral perfusion monitoring can also be used to study intracranial collateral circulation, which is emerging as a powerful determinant of stroke outcome and a possible therapeutic target. Despite a recognized role of Laser Doppler perfusion monitoring as part of the current guidelines for experimental cerebral ischemia, a number of technical difficulties exist that limit its widespread use. One of the major issues is obtaining a secure and prolonged attachment of a deep-penetration Laser Doppler probe to the animal skull. In this video, we show our optimized system for cerebral perfusion monitoring during transient middle cerebral artery occlusion by intraluminal filament in the rat. We developed in-house a simple method to obtain a custom made holder for twin-fibre (deep-penetration) Laser Doppler probes, which allow multi-site monitoring if needed. A continuous and prolonged monitoring of cerebral perfusion could easily be obtained over the intact skull.
Medicine, Issue 72, Neuroscience, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Surgery, Brain Ischemia, Stroke, Hemodynamics, middle cerebral artery occlusion, cerebral hemodynamics, perfusion monitoring, Laser Doppler, intracranial collaterals, ischemic penumbra, rat, animal model
50214
Play Button
The Hypoxic Ischemic Encephalopathy Model of Perinatal Ischemia
Authors: Hidetoshi Taniguchi, Katrin Andreasson.
Institutions: Stanford University School of Medicine.
Hypoxic-Ischemic Encephalopathy (HIE) is the consequence of systemic asphyxia occurring at birth. Twenty five percent of neonates with HIE develop severe and permanent neuropsychological sequelae, including mental retardation, cerebral palsy, and epilepsy. The outcomes of HIE are devastating and permanent, making it critical to identify and develop therapeutic strategies to reduce brain injury in newborns with HIE. To that end, the neonatal rat model for hypoxic-ischemic brain injury has been developed to model this human condition. The HIE model was first validated by Vannucci et al 1 and has since been extensively used to identify mechanisms of brain injury resulting from perinatal hypoxia-ischemia 2 and to test potential therapeutic interventions 3,4. The HIE model is a two step process and involves the ligation of the left common carotid artery followed by exposure to a hypoxic environment. Cerebral blood flow (CBF) in the hemisphere ipsilateral to the ligated carotid artery does not decrease because of the collateral blood flow via the circle of Willis; however with lower oxygen tension, the CBF in the ipsilateral hemisphere decreases significantly and results in unilateral ischemic injury. The use of 2,3,5-triphenyltetrazolium chloride (TTC) to stain and identify ischemic brain tissue was originally developed for adult models of rodent cerebral ischemia 5, and is used to evaluate the extent of cerebral infarctin at early time points up to 72 hours after the ischemic event 6. In this video, we demonstrate the hypoxic-ischemic injury model in postnatal rat brain and the evaluation of the infarct size using TTC staining.
Neuroscience, Issue 21, Hypoxic-ischemic encephalopathy (HIE), 2 3 5-triphenyltetrazolium chloride (TTC), brain infarct
955
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.