JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.
PUBLISHED: 01-25-2015
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (?GuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Authors: Nikolai Hentze, Matthias P. Mayer.
Published: 11-29-2013
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
23 Related JoVE Articles!
Play Button
Thermodynamics of Membrane Protein Folding Measured by Fluorescence Spectroscopy
Authors: Diana E. Schlamadinger, Judy E. Kim.
Institutions: University of California San Diego - UCSD.
Membrane protein folding is an emerging topic with both fundamental and health-related significance. The abundance of membrane proteins in cells underlies the need for comprehensive study of the folding of this ubiquitous family of proteins. Additionally, advances in our ability to characterize diseases associated with misfolded proteins have motivated significant experimental and theoretical efforts in the field of protein folding. Rapid progress in this important field is unfortunately hindered by the inherent challenges associated with membrane proteins and the complexity of the folding mechanism. Here, we outline an experimental procedure for measuring the thermodynamic property of the Gibbs free energy of unfolding in the absence of denaturant, ΔH2O, for a representative integral membrane protein from E. coli. This protocol focuses on the application of fluorescence spectroscopy to determine equilibrium populations of folded and unfolded states as a function of denaturant concentration. Experimental considerations for the preparation of synthetic lipid vesicles as well as key steps in the data analysis procedure are highlighted. This technique is versatile and may be pursued with different types of denaturant, including temperature and pH, as well as in various folding environments of lipids and micelles. The current protocol is one that can be generalized to any membrane or soluble protein that meets the set of criteria discussed below.
Bioengineering, Issue 50, tryptophan, peptides, Gibbs free energy, protein stability, vesicles
Play Button
Submillisecond Conformational Changes in Proteins Resolved by Photothermal Beam Deflection
Authors: Walter G. Gonzalez, Jaroslava Miksovska.
Institutions: Florida International University.
Photothermal beam deflection together with photo-acoustic calorimetry and thermal grating belongs to the family of photothermal methods that monitor the time-profile volume and enthalpy changes of light induced conformational changes in proteins on microsecond to millisecond time-scales that are not accessible using traditional stop-flow instruments. In addition, since overall changes in volume and/or enthalpy are probed, these techniques can be applied to proteins and other biomacromolecules that lack a fluorophore and or a chromophore label. To monitor dynamics and energetics of structural changes associated with Ca2+ binding to calcium transducers, such neuronal calcium sensors, a caged calcium compound, DM-nitrophen, is employed to photo-trigger a fast (τ < 20 μsec) increase in free calcium concentration and the associated volume and enthalpy changes are probed using photothermal beam deflection technique.
Chemistry, Issue 84, photothermal techniques, photothermal beam deflection, volume change, enthalpy change, calcium sensors, potassium channel interaction protein, DM-nitrophen
Play Button
Synthesis of an Intein-mediated Artificial Protein Hydrogel
Authors: Miguel A. Ramirez, Zhilei Chen.
Institutions: Texas A&M University, College Station, Texas A&M University, College Station.
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.
Bioengineering, Issue 83, split-intein, self-assembly, shear-thinning, enzyme, immobilization, organic synthesis
Play Button
Expression, Isolation, and Purification of Soluble and Insoluble Biotinylated Proteins for Nerve Tissue Regeneration
Authors: Aleesha M. McCormick, Natalie A. Jarmusik, Elizabeth J. Endrizzi, Nic D. Leipzig.
Institutions: University of Akron.
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.
Bioengineering, Issue 83, protein engineering, recombinant protein production, AviTag, BirA, biotinylation, pET vector system, E. coli, inclusion bodies, Ni-NTA, size exclusion chromatography
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
Play Button
Measurement of Heme Synthesis Levels in Mammalian Cells
Authors: Jagmohan Hooda, Maksudul Alam, Li Zhang.
Institutions: University of Texas at Dallas.
Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-14C] 5-aminolevulinic acid ([14C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [14C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.
Molecular Biology, Issue 101, Heme, heme synthesis level, mammalian cells, [4-14C] 5-aminolevulinic acid ([14C] 5-ALA), cancer
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
Authors: Alberto Natali, Laura M. Roy, Roberta Croce.
Institutions: VU University Amsterdam.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory, and examples describing applications of the method are provided.
Biochemistry, Issue 92, Reconstitution, Photosynthesis, Chlorophyll, Carotenoids, Light Harvesting Protein, Chlamydomonas reinhardtii, Arabidopsis thaliana
Play Button
Luminescence Resonance Energy Transfer to Study Conformational Changes in Membrane Proteins Expressed in Mammalian Cells
Authors: Drew M. Dolino, Swarna S. Ramaswamy, Vasanthi Jayaraman.
Institutions: University of Texas Health Science Center at Houston.
Luminescence Resonance Energy Transfer, or LRET, is a powerful technique used to measure distances between two sites in proteins within the distance range of 10-100 Å. By measuring the distances under various ligated conditions, conformational changes of the protein can be easily assessed. With LRET, a lanthanide, most often chelated terbium, is used as the donor fluorophore, affording advantages such as a longer donor-only emission lifetime, the flexibility to use multiple acceptor fluorophores, and the opportunity to detect sensitized acceptor emission as an easy way to measure energy transfer without the risk of also detecting donor-only signal. Here, we describe a method to use LRET on membrane proteins expressed and assayed on the surface of intact mammalian cells. We introduce a protease cleavage site between the LRET fluorophore pair. After obtaining the original LRET signal, cleavage at that site removes the specific LRET signal from the protein of interest allowing us to quantitatively subtract the background signal that remains after cleavage. This method allows for more physiologically relevant measurements to be made without the need for purification of protein.
Bioengineering, Issue 91, LRET, FRET, Luminescence Resonance Energy Transfer, Fluorescence Resonance Energy Transfer, glutamate receptors, acid sensing ion channel, protein conformation, protein dynamics, fluorescence, protein-protein interactions
Play Button
Use of Stopped-Flow Fluorescence and Labeled Nucleotides to Analyze the ATP Turnover Cycle of Kinesins
Authors: Jennifer T. Patel, Hannah R. Belsham, Alexandra J. Rathbone, Claire T. Friel.
Institutions: University of Nottingham.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.
Chemistry, Issue 92, Kinesin, ATP turnover, mantATP, mantADP, stopped-flow fluorescence, microtubules, enzyme kinetics, nucleotide
Play Button
Investigating Receptor-ligand Systems of the Cellulosome with AFM-based Single-molecule Force Spectroscopy
Authors: Markus A. Jobst, Constantin Schoeler, Klara Malinowska, Michael A. Nash.
Institutions: Ludwig-Maximilians-Universität.
Cellulosomes are discrete multienzyme complexes used by a subset of anaerobic bacteria and fungi to digest lignocellulosic substrates. Assembly of the enzymes onto the noncatalytic scaffold protein is directed by interactions among a family of related receptor-ligand pairs comprising interacting cohesin and dockerin modules. The extremely strong binding between cohesin and dockerin modules results in dissociation constants in the low picomolar to nanomolar range, which may hamper accurate off-rate measurements with conventional bulk methods. Single-molecule force spectroscopy (SMFS) with the atomic force microscope measures the response of individual biomolecules to force, and in contrast to other single-molecule manipulation methods (i.e. optical tweezers), is optimal for studying high-affinity receptor-ligand interactions because of its ability to probe the high-force regime (>120 pN). Here we present our complete protocol for studying cellulosomal protein assemblies at the single-molecule level. Using a protein topology derived from the native cellulosome, we worked with enzyme-dockerin and carbohydrate binding module-cohesin (CBM-cohesin) fusion proteins, each with an accessible free thiol group at an engineered cysteine residue. We present our site-specific surface immobilization protocol, along with our measurement and data analysis procedure for obtaining detailed binding parameters for the high-affinity complex. We demonstrate how to quantify single subdomain unfolding forces, complex rupture forces, kinetic off-rates, and potential widths of the binding well. The successful application of these methods in characterizing the cohesin-dockerin interaction responsible for assembly of multidomain cellulolytic complexes is further described.
Bioengineering, Issue 82, biophysics, protein unfolding, atomic force microscopy, surface immobilization
Play Button
T-wave Ion Mobility-mass Spectrometry: Basic Experimental Procedures for Protein Complex Analysis
Authors: Izhak Michaelevski, Noam Kirshenbaum, Michal Sharon.
Institutions: Weizmann Institute of Science.
Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N2) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Ω). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Ω is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Ω is calculated using a calibration curve generated from calibrant proteins with defined cross-sections1. The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions1. Several recent IM studies of both individual proteins2,3 and non-covalent protein complexes4-9, successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS-MS analysis of protein complexes using the Synapt (Quadrupole-Ion Mobility-Time-of-Flight) HDMS instrument (Waters Ltd; the only commercial IM-MS instrument currently available)10. We describe the basic optimization steps, the calibration of collision cross-sections, and methods for data processing and interpretation. The final step of the protocol discusses methods for calculating theoretical Ω values. Overall, the protocol does not attempt to cover every aspect of IM-MS characterization of protein assemblies; rather, its goal is to introduce the practical aspects of the method to new researchers in the field.
cellular biology, Issue 41, mass spectrometry, ion-mobility, protein complexes, non-covalent interactions, structural biology
Play Button
Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR
Authors: Michal S. Shoshan, Edit Y. Tshuva, Deborah E. Shalev.
Institutions: The Hebrew University of Jerusalem, The Hebrew University of Jerusalem.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy. NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.
Chemistry, Issue 82, solution structure determination, NMR, peptide models, copper-binding proteins, copper complexes
Play Button
Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding
Authors: David Almond, Timothy Cardozo.
Institutions: School of Medicine, New York University.
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Infection, Issue 43, HIV-1, structure-activity relationships, ab initio simulations, antibody-mediated neutralization, vaccine design
Play Button
Examining the Conformational Dynamics of Membrane Proteins in situ with Site-directed Fluorescence Labeling
Authors: Ryan Richards, Robert E. Dempski.
Institutions: Worcester Polytechnic Institute.
Two electrode voltage clamp electrophysiology (TEVC) is a powerful tool to investigate the mechanism of ion transport1 for a wide variety of membrane proteins including ion channels2, ion pumps3, and transporters4. Recent developments have combined site-specific fluorophore labeling alongside TEVC to concurrently examine the conformational dynamics at specific residues and function of these proteins on the surface of single cells. We will describe a method to study the conformational dynamics of membrane proteins by simultaneously monitoring fluorescence and current changes using voltage-clamp fluorometry. This approach can be used to examine the molecular motion of membrane proteins site-specifically following cysteine replacement and site-directed fluorophore labeling5,6. Furthermore, this method provides an approach to determine distance constraints between specific residues7,8. This is achieved by selectively attaching donor and acceptor fluorophores to two mutated cysteine residues of interest. In brief, these experiments are performed following functional expression of the desired protein on the surface of Xenopus leavis oocytes. The large surface area of these oocytes enables facile functional measurements and a robust fluorescence signal5. It is also possible to readily change the extracellular conditions such as pH, ligand or cations/anions, which can provide further information on the mechanism of membrane proteins4. Finally, recent developments have also enabled the manipulation of select internal ions following co-expression with a second protein9. Our protocol is described in multiple parts. First, cysteine scanning mutagenesis proceeded by fluorophore labeling is completed at residues located at the interface of the transmembrane and extracellular domains. Subsequent experiments are designed to identify residues which demonstrate large changes in fluorescence intensity (<5%)3 upon a conformational change of the protein. Second, these changes in fluorescence intensity are compared to the kinetic parameters of the membrane protein in order to correlate the conformational dynamics to the function of the protein10. This enables a rigorous biophysical analysis of the molecular motion of the target protein. Lastly, two residues of the holoenzyme can be labeled with a donor and acceptor fluorophore in order to determine distance constraints using donor photodestruction methods. It is also possible to monitor the relative movement of protein subunits following labeling with a donor and acceptor fluorophore.
Cellular Biology, Issue 51, membrane protein, two electrode voltage-clamp, biophysics, site-specific fluorophore labeling, microscopy, conformational dynamics
Play Button
Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay
Authors: Miroslav Koulnis, Ramona Pop, Ermelinda Porpiglia, Jeffrey R. Shearstone, Daniel Hidalgo, Merav Socolovsky.
Institutions: University of Massachusetts Medical School.
The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic stress response. The resulting increase in the number of circulating red cells improves tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to the survival and recovery from physiological and pathological conditions such as high altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation. The mouse is a key model for the study of erythropoiesis and its stress response. Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between embryonic days 12.5 and 15.5, in the neonatal spleen, and in adult spleen and bone marrow. Classical methods of identifying erythroid progenitors in tissue rely on the ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-solid media. Their erythroid precursor progeny are identified based on morphological criteria. Neither of these classical methods allow access to large numbers of differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-cytometric method of identifying and studying differentiation-stage-specific erythroid progenitors and precursors, directly in the context of freshly isolated mouse tissue. The assay relies on the cell-surface markers CD71, Ter119, and on the flow-cytometric 'forward-scatter' parameter, which is a function of cell size. The CD71/Ter119 assay can be used to study erythroid progenitors during their response to erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen conditions. It may also be used to study erythroid progenitors directly in the tissues of genetically modified adult mice or embryos, in order to assess the specific role of the modified molecular pathway in erythropoiesis.
Developmental Biology, Issue 54, erythropoiesis, hematopoietic progenitors, flow-cytometry, erythropoietin, EpoR-/- mouse, erythropoietic stress, fetal erythropoiesis, CD71, Ter119, Fetal liver, erythroid subsets, erythroblast, cell cycle
Play Button
Pull-down of Calmodulin-binding Proteins
Authors: Kanwardeep S. Kaleka, Amber N. Petersen, Matthew A. Florence, Nashaat Z. Gerges.
Institutions: Medical College of Wisconsin .
Calcium (Ca2+) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca2+ signaling is mediated through the calcium-binding protein known as calmodulin (CaM)1,2. CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca2+ (Ca2+-CaM) as opposed to its Ca2+-free state (ApoCaM)3. While most target proteins bind Ca2+-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin4, neurogranin (Ng)5, and certain myosins6. These proteins have been shown to play important roles in presynaptic function7, postsynaptic function8, and muscle contraction9, respectively. Their ability to bind and release CaM in the absence or presence of Ca2+ is pivotal in their function. In contrast, many proteins only bind Ca2+-CaM and require this binding for their activation. Examples include myosin light chain kinase10, Ca2+/CaM-dependent kinases (CaMKs)11 and phosphatases (e.g. calcineurin)12, and spectrin kinase13, which have a variety of direct and downstream effects14. The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca2+-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca2+-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function8,15. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM. Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca2+, using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca2+ on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca2+/CaM signaling and proteins that interact with CaM.
Molecular BIology, Issue 59, Calmodulin, calcium, IQ-motif, affinity chromatography, pull-down, Ca2+/Calmodulin-dependent Kinase II, neurogranin
Play Button
Controlling the Size, Shape and Stability of Supramolecular Polymers in Water
Authors: Pol Besenius, Isja de Feijter, Nico A.J.M. Sommerdijk, Paul H.H. Bomans, Anja R. A. Palmans.
Institutions: Westfälische Wilhelms-Universität Münster, Eindhoven University of Technology, Eindhoven University of Technology.
For aqueous based supramolecular polymers, the simultaneous control over shape, size and stability is very difficult1. At the same time, the ability to do so is highly important in view of a number of applications in functional soft matter including electronics, biomedical engineering, and sensors. In the past, successful strategies to control the size and shape of supramolecular polymers typically focused on the use of templates2,3, end cappers4 or selective solvent techniques5. Here we disclose a strategy based on self-assembling discotic amphiphiles that leads to the control over stack length and shape of ordered, chiral columnar aggregates. By balancing electrostatic repulsive interactions on the hydrophilic rim and attractive non-covalent forces within the hydrophobic core of the polymerizing building block, we manage to create small and discrete spherical objects6,7. Increasing the salt concentration to screen the charges induces a sphere-to-rod transition. Intriguingly, this transition is expressed in an increase of cooperativity in the temperature-dependent self-assembly mechanism, and more stable aggregates are obtained. For our study we select a benzene-1,3,5-tricarboxamide (BTA) core connected to a hydrophilic metal chelate via a hydrophobic, fluorinated L-phenylalanine based spacer (Scheme 1). The metal chelate selected is a Gd(III)-DTPA complex that contains two overall remaining charges per complex and necessarily two counter ions. The one-dimensional growth of the aggregate is directed by π-π stacking and intermolecular hydrogen bonding. However, the electrostatic, repulsive forces that arise from the charges on the Gd(III)-DTPA complex start limiting the one-dimensional growth of the BTA-based discotic once a certain size is reached. At millimolar concentrations the formed aggregate has a spherical shape and a diameter of around 5 nm as inferred from 1H-NMR spectroscopy, small angle X-ray scattering, and cryogenic transmission electron microscopy (cryo-TEM). The strength of the electrostatic repulsive interactions between molecules can be reduced by increasing the salt concentration of the buffered solutions. This screening of the charges induces a transition from spherical aggregates into elongated rods with a length > 25 nm. Cryo-TEM allows to visualise the changes in shape and size. In addition, CD spectroscopy permits to derive the mechanistic details of the self-assembly processes before and after the addition of salt. Importantly, the cooperativity -a key feature that dictates the physical properties of the produced supramolecular polymers- increases dramatically upon screening the electrostatic interactions. This increase in cooperativity results in a significant increase in the molecular weight of the formed supramolecular polymers in water.
Chemical Engineering, Issue 66, Chemistry, Physics, Self-assembly, cryogenic transmission electron microscopy, circular dichroism, controlled architecture, discotic amphiphile
Play Button
Production of Disulfide-stabilized Transmembrane Peptide Complexes for Structural Studies
Authors: Pooja Sharma, Mariam Kaywan-Lutfi, Logesvaran Krshnan, Eamon F. X. Byrne, Melissa Joy Call, Matthew Edwin Call.
Institutions: The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne.
Physical interactions among the lipid-embedded alpha-helical domains of membrane proteins play a crucial role in folding and assembly of membrane protein complexes and in dynamic processes such as transmembrane (TM) signaling and regulation of cell-surface protein levels. Understanding the structural features driving the association of particular sequences requires sophisticated biophysical and biochemical analyses of TM peptide complexes. However, the extreme hydrophobicity of TM domains makes them very difficult to manipulate using standard peptide chemistry techniques, and production of suitable study material often proves prohibitively challenging. Identifying conditions under which peptides can adopt stable helical conformations and form complexes spontaneously adds a further level of difficulty. Here we present a procedure for the production of homo- or hetero-dimeric TM peptide complexes from materials that are expressed in E. coli, thus allowing incorporation of stable isotope labels for nuclear magnetic resonance (NMR) or non-natural amino acids for other applications relatively inexpensively. The key innovation in this method is that TM complexes are produced and purified as covalently associated (disulfide-crosslinked) assemblies that can form stable, stoichiometric and homogeneous structures when reconstituted into detergent, lipid or other membrane-mimetic materials. We also present carefully optimized procedures for expression and purification that are equally applicable whether producing single TM domains or crosslinked complexes and provide advice for adapting these methods to new TM sequences.
Biochemistry, Issue 73, Structural Biology, Chemistry, Chemical Engineering, Biophysics, Genetics, Molecular Biology, Membrane Proteins, Proteins, Molecular Structure, transmembrane domain, peptide chemistry, membrane protein structure, immune receptors, reversed-phase HPLC, HPLC, peptides, lipids, protein, cloning, TFA Elution, CNBr Digestion, NMR, expression, cell culture
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Mass Spectrometric Approaches to Study Protein Structure and Interactions in Lyophilized Powders
Authors: Balakrishnan S. Moorthy, Lavanya K. Iyer, Elizabeth M. Topp.
Institutions: Purdue University.
Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (Nfast, Nslow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol.
Chemistry, Issue 98, Amide hydrogen/deuterium exchange, photolytic labeling, mass spectrometry, lyophilized formulations, photo-leucine, solid-state, protein structure, protein conformation, protein dynamics, secondary structure, protein stability, excipients
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.