JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Tailoring the implementation of new biomarkers based on their added predictive value in subgroups of individuals.
.
PLoS ONE
PUBLISHED: 01-27-2015
The value of new biomarkers or imaging tests, when added to a prediction model, is currently evaluated using reclassification measures, such as the net reclassification improvement (NRI). However, these measures only provide an estimate of improved reclassification at population level. We present a straightforward approach to characterize subgroups of reclassified individuals in order to tailor implementation of a new prediction model to individuals expected to benefit from it.
ABSTRACT
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d - the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.
26 Related JoVE Articles!
Play Button
Uncovering Beat Deafness: Detecting Rhythm Disorders with Synchronized Finger Tapping and Perceptual Timing Tasks
Authors: Simone Dalla Bella, Jakub Sowiński.
Institutions: University of Montpellier, Institut Universitaire de France, University of Finance and Management in Warsaw, International Laboratory for Brain, Music, and Sound Research (BRAMS).
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson’s disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
Behavior, Issue 97, rhythm, timing, synchronization, disorders, beat deafness, perception and action
51761
Play Button
Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins
Authors: Ruben Magni, Benjamin H. Espina, Lance A. Liotta, Alessandra Luchini, Virginia Espina.
Institutions: George Mason University, Ceres Nanosciences.
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Bioengineering, Issue 90, biomarker, hydrogel, low abundance, mass spectrometry, nanoparticle, plasma, protein, urine
51789
Play Button
Topographical Estimation of Visual Population Receptive Fields by fMRI
Authors: Sangkyun Lee, Amalia Papanikolaou, Georgios A. Keliris, Stelios M. Smirnakis.
Institutions: Baylor College of Medicine, Max Planck Institute for Biological Cybernetics, Bernstein Center for Computational Neuroscience.
Visual cortex is retinotopically organized so that neighboring populations of cells map to neighboring parts of the visual field. Functional magnetic resonance imaging allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of the visual field that activates the cells within each voxel. Prior, direct, pRF estimation methods1 suffer from certain limitations: 1) the pRF model is chosen a-priori and may not fully capture the actual pRF shape, and 2) pRF centers are prone to mislocalization near the border of the stimulus space. Here a new topographical pRF estimation method2 is proposed that largely circumvents these limitations. A linear model is used to predict the Blood Oxygen Level-Dependent (BOLD) signal by convolving the linear response of the pRF to the visual stimulus with the canonical hemodynamic response function. PRF topography is represented as a weight vector whose components represent the strength of the aggregate response of voxel neurons to stimuli presented at different visual field locations. The resulting linear equations can be solved for the pRF weight vector using ridge regression3, yielding the pRF topography. A pRF model that is matched to the estimated topography can then be chosen post-hoc, thereby improving the estimates of pRF parameters such as pRF-center location, pRF orientation, size, etc. Having the pRF topography available also allows the visual verification of pRF parameter estimates allowing the extraction of various pRF properties without having to make a-priori assumptions about the pRF structure. This approach promises to be particularly useful for investigating the pRF organization of patients with disorders of the visual system.
Behavior, Issue 96, population receptive field, vision, functional magnetic resonance imaging, retinotopy
51811
Play Button
Workflow for High-content, Individual Cell Quantification of Fluorescent Markers from Universal Microscope Data, Supported by Open Source Software
Authors: Simon R. Stockwell, Sibylle Mittnacht.
Institutions: UCL Cancer Institute.
Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software1 to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.
Cellular Biology, Issue 94, Image analysis, High-content analysis, Screening, Microscopy, Individual cell analysis, Multiplexed assays
51882
Play Button
Design and Implementation of an fMRI Study Examining Thought Suppression in Young Women with, and At-risk, for Depression
Authors: Caitlin L. Carew, Erica L. Tatham, Andrea M. Milne, Glenda M. MacQueen, Geoffrey B.C. Hall.
Institutions: McMaster University, McMaster University, University of Calgary, McMaster University.
Ruminative brooding is associated with increased vulnerability to major depression. Individuals who regularly ruminate will often try to reduce the frequency of their negative thoughts by actively suppressing them. We aim to identify the neural correlates underlying thought suppression in at-risk and depressed individuals. Three groups of women were studied; a major depressive disorder group, an at-risk group (having a first degree relative with depression) and controls. Participants performed a mixed block-event fMRI paradigm involving thought suppression, free thought and motor control periods. Participants identified the re-emergence of “to-be-suppressed” thoughts (“popping” back into conscious awareness) with a button press. During thought suppression the control group showed the greatest activation of the dorsolateral prefrontal cortex, followed by the at-risk, then depressed group. During the re-emergence of intrusive thoughts compared to successful re-suppression of those thoughts, the control group showed the greatest activation of the anterior cingulate cortices, followed by the at-risk, then depressed group. At-risk participants displayed anomalies in the neural regulation of thought suppression resembling the dysregulation found in depressed individuals. The predictive value of these changes in the onset of depression remains to be determined.
Behavior, Issue 99, Major Depressive Disorder, Risk, Thought Suppression, fMRI, Women, Rumination, Thought Intrusion
52061
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
Practical Methodology of Cognitive Tasks Within a Navigational Assessment
Authors: Manon Robillard, Chantal Mayer-Crittenden, Annie Roy-Charland, Michèle Minor-Corriveau, Roxanne Bélanger.
Institutions: Laurentian University, Laurentian University.
This paper describes an approach for measuring navigation accuracy relative to cognitive skills. The methodology behind the assessment will thus be clearly outlined in a step-by-step manner. Navigational skills are important when trying to find symbols within a speech-generating device (SGD) that has a dynamic screen and taxonomical organization. The following skills have been found to impact children’s ability to find symbols when navigating within the levels of an SGD: sustained attention, categorization, cognitive flexibility, and fluid reasoning1,2. According to past studies, working memory was not correlated with navigation1,2. The materials needed for this method include a computerized tablet, an augmentative and alternative communication application, a booklet of symbols, and the Leiter International Performance Scale-Revised (Leiter-R)3. This method has been used in two previous studies. Robillard, Mayer-Crittenden, Roy-Charland, Minor-Corriveau and Bélanger1 assessed typically developing children, while Rondeau, Robillard and Roy-Charland2 assessed children and adolescents with a diagnosis of Autism Spectrum Disorder. The direct observation of this method will facilitate the replication of this study for researchers. It will also help clinicians that work with children who have complex communication needs to determine the children’s ability to navigate an SGD with taxonomical categorization.
Behavior, Issue 100, Augmentative and alternative communication, navigation, cognition, assessment, speech-language pathology, children
52286
Play Button
Quantitative Mass Spectrometric Profiling of Cancer-cell Proteomes Derived From Liquid and Solid Tumors
Authors: Hanibal Bohnenberger, Philipp Ströbel, Sebastian Mohr, Jasmin Corso, Tobias Berg, Henning Urlaub, Christof Lenz, Hubert Serve, Thomas Oellerich.
Institutions: University Medical Center, Göttingen, Goethe University of Frankfurt, Max Planck Institute for Biophysical Chemistry, University Medical Center, Göttingen, German Cancer Consortium, German Cancer Research Center.
In-depth analyses of cancer cell proteomes are needed to elucidate oncogenic pathomechanisms, as well as to identify potential drug targets and diagnostic biomarkers. However, methods for quantitative proteomic characterization of patient-derived tumors and in particular their cellular subpopulations are largely lacking. Here we describe an experimental set-up that allows quantitative analysis of proteomes of cancer cell subpopulations derived from either liquid or solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry followed by bioinformatic data analysis. To enrich specific cellular subsets, liquid tumors are first immunophenotyped by flow cytometry followed by FACS-sorting; for solid tumors, laser-capture microdissection is used to purify specific cellular subpopulations. In a second step, proteins are extracted from the purified cells and subsequently combined with a tumor-specific, SILAC-labeled spike-in standard that enables protein quantification. The resulting protein mixture is subjected to either gel electrophoresis or Filter Aided Sample Preparation (FASP) followed by tryptic digestion. Finally, tryptic peptides are analyzed using a hybrid quadrupole-orbitrap mass spectrometer, and the data obtained are processed with bioinformatic software suites including MaxQuant. By means of the workflow presented here, up to 8,000 proteins can be identified and quantified in patient-derived samples, and the resulting protein expression profiles can be compared among patients to identify diagnostic proteomic signatures or potential drug targets.
Medicine, Issue 96, Proteomics, solid tumors, leukemia, formalin-fixed and paraffin-embedded tissue (FFPE), laser-capture microdissection, spike-in SILAC, quantitative mass spectrometry
52435
Play Button
A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay
Authors: Jennifer A. Martin, Joshua E. Smith, Mercedes Warren, Jorge L. Chávez, Joshua A. Hagen, Nancy Kelley-Loughnane.
Institutions: Wright-Patterson Air Force Base, The Henry M. Jackson Foundation, UES, Inc..
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.
Molecular Biology, Issue 96, Aptamer, structure-switching, SELEX, small molecule, cortisol, next generation sequencing, gold nanoparticle, assay
52545
Play Button
Vision Training Methods for Sports Concussion Mitigation and Management
Authors: Joseph F. Clark, Angelo Colosimo, James K. Ellis, Robert Mangine, Benjamin Bixenmann, Kimberly Hasselfeld, Patricia Graman, Hagar Elgendy, Gregory Myer, Jon Divine.
Institutions: University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, Cincinnati Children's Hospital Medical Center.
There is emerging evidence supporting the use vision training, including light board training tools, as a concussion baseline and neuro-diagnostic tool and potentially as a supportive component to concussion prevention strategies. This paper is focused on providing detailed methods for select vision training tools and reporting normative data for comparison when vision training is a part of a sports management program. The overall program includes standard vision training methods including tachistoscope, Brock’s string, and strobe glasses, as well as specialized light board training algorithms. Stereopsis is measured as a means to monitor vision training affects. In addition, quantitative results for vision training methods as well as baseline and post-testing *A and Reaction Test measures with progressive scores are reported. Collegiate athletes consistently improve after six weeks of training in their stereopsis, *A and Reaction Test scores. When vision training is initiated as a team wide exercise, the incidence of concussion decreases in players who participate in training compared to players who do not receive the vision training. Vision training produces functional and performance changes that, when monitored, can be used to assess the success of the vision training and can be initiated as part of a sports medical intervention for concussion prevention.
Behavior, Issue 99, Vision training, peripheral vision, functional peripheral vision, concussion, concussion management, diagnosis, rehabilitation, eyes, sight, seeing, sight
52648
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
Authors: Marc N. Coutanche, Sharon L. Thompson-Schill.
Institutions: University of Pennsylvania.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.
Neuroscience, Issue 89, fMRI, MVPA, connectivity, informational connectivity, functional connectivity, networks, multi-voxel pattern analysis, decoding, classification, method, multivariate
51226
Play Button
A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia
Authors: Stephan J. Guyenet, Stephanie A. Furrer, Vincent M. Damian, Travis D. Baughan, Albert R. La Spada, Gwenn A. Garden.
Institutions: University of Washington, University of Washington, University of California, San Diego - Rady Children’s Hospital.
We describe a protocol for the rapid and sensitive quantification of disease severity in mouse models of cerebella ataxia. It is derived from previously published phenotype assessments in several disease models, including spinocerebellar ataxias, Huntington s disease and spinobulbar muscular atrophy. Measures include hind limb clasping, ledge test, gait and kyphosis. Each measure is recorded on a scale of 0-3, with a combined total of 0-12 for all four measures. The results effectively discriminate between affected and non-affected individuals, while also quantifying the temporal progression of neurodegenerative disease phenotypes. Measures may be analyzed individually or combined into a composite phenotype score for greater statistical power. The ideal combination of the four described measures will depend upon the disorder in question. We present an example of the protocol used to assess disease severity in a transgenic mouse model of spinocerebellar ataxia type 7 (SCA7). Albert R. La Spada and Gwenn A. Garden contributed to this manuscript equally.
JoVE Neuroscience, Issue 39, Neurodegeneration, Mouse behavior assay, cerebellar ataxia, polyglutamine disease
1787
Play Button
A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
Authors: Yana Yunusova, Jordan R. Green, Jun Wang, Gary Pattee, Lorne Zinman.
Institutions: University of Toronto, Sunnybrook Health Science Centre, University of Nebraska-Lincoln, University of Nebraska Medical Center, University of Toronto.
Improved methods for assessing bulbar impairment are necessary for expediting diagnosis of bulbar dysfunction in ALS, for predicting disease progression across speech subsystems, and for addressing the critical need for sensitive outcome measures for ongoing experimental treatment trials. To address this need, we are obtaining longitudinal profiles of bulbar impairment in 100 individuals based on a comprehensive instrumentation-based assessment that yield objective measures. Using instrumental approaches to quantify speech-related behaviors is very important in a field that has primarily relied on subjective, auditory-perceptual forms of speech assessment1. Our assessment protocol measures performance across all of the speech subsystems, which include respiratory, phonatory (laryngeal), resonatory (velopharyngeal), and articulatory. The articulatory subsystem is divided into the facial components (jaw and lip), and the tongue. Prior research has suggested that each speech subsystem responds differently to neurological diseases such as ALS. The current protocol is designed to test the performance of each speech subsystem as independently from other subsystems as possible. The speech subsystems are evaluated in the context of more global changes to speech performance. These speech system level variables include speaking rate and intelligibility of speech. The protocol requires specialized instrumentation, and commercial and custom software. The respiratory, phonatory, and resonatory subsystems are evaluated using pressure-flow (aerodynamic) and acoustic methods. The articulatory subsystem is assessed using 3D motion tracking techniques. The objective measures that are used to quantify bulbar impairment have been well established in the speech literature and show sensitivity to changes in bulbar function with disease progression. The result of the assessment is a comprehensive, across-subsystem performance profile for each participant. The profile, when compared to the same measures obtained from healthy controls, is used for diagnostic purposes. Currently, we are testing the sensitivity and specificity of these measures for diagnosis of ALS and for predicting the rate of disease progression. In the long term, the more refined endophenotype of bulbar ALS derived from this work is expected to strengthen future efforts to identify the genetic loci of ALS and improve diagnostic and treatment specificity of the disease as a whole. The objective assessment that is demonstrated in this video may be used to assess a broad range of speech motor impairments, including those related to stroke, traumatic brain injury, multiple sclerosis, and Parkinson disease.
Medicine, Issue 48, speech, assessment, subsystems, bulbar function, amyotrophic lateral sclerosis
2422
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
3259
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
3871
Play Button
Spatial Multiobjective Optimization of Agricultural Conservation Practices using a SWAT Model and an Evolutionary Algorithm
Authors: Sergey Rabotyagov, Todd Campbell, Adriana Valcu, Philip Gassman, Manoj Jha, Keith Schilling, Calvin Wolter, Catherine Kling.
Institutions: University of Washington, Iowa State University, North Carolina A&T University, Iowa Geological and Water Survey.
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,5,12,20) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods3,4,9,10,13-15,17-19,22,23,25. In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model7 with a multiobjective evolutionary algorithm SPEA226, and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.
Environmental Sciences, Issue 70, Plant Biology, Civil Engineering, Forest Sciences, Water quality, multiobjective optimization, evolutionary algorithms, cost efficiency, agriculture, development
4009
Play Button
Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
Authors: Sevda C. Aslan, Manpreet K. Chopra, William B. McKay, Rodney J. Folz, Alexander V. Ovechkin.
Institutions: University of Louisville, Shepherd Center, University of Louisville.
During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised1,2 leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI3. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax)4,5. These values provide indirect measurements of respiratory muscle performance6. In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function6. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles7, known as the voluntary response index (VRI)8, we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA)9. This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity9-11. We showed previously9 that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.
Medicine, Issue 77, Anatomy, Physiology, Behavior, Neurobiology, Neuroscience, Spinal Cord Injuries, Pulmonary Disease, Chronic Obstructive, Motor Activity, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Respiratory Muscles, Motor Control, Electromyography, Pulmonary Function Test, Spinal Cord Injury, SCI, clinical techniques
50178
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
50977
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Viral-mediated Labeling and Transplantation of Medial Ganglionic Eminence (MGE) Cells for In Vivo Studies
Authors: Daniel Vogt, Pei-Rung Wu, Shawn F. Sorrells, Christine Arnold, Arturo Alvarez-Buylla, John L. R. Rubenstein.
Institutions: University of California San Francisco, University of California San Francisco.
GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.
Developmental Biology, Issue 98, MGE, interneuron, transplantation, lentivirus, cell labeling, somatostatin, Cre
52740
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.