JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Modulation of macrophage activities in proliferation, lysosome, and phagosome by the nonspecific immunostimulator, mica.
.
PLoS ONE
PUBLISHED: 02-11-2015
It was reported that the aluminosilicate material mica activated macrophages and showed its immunostimulating effects. However, the mechanisms by which it exerts these effects are unclear. To address this, we evaluated the effects of mica fine particles (MFP, 804.1 ± 0.02 nm) on the murine macrophage cell line, RAW 264.7. Specifically, RAW 264.7 cells were treated with 100 and 500 ?g/mL MFP and their proliferative response was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Changes in global gene expression upon MFP treatment for 12 and 48 h were also determined using microarrays. Following the MFP treatment, RAW 264.7 cells showed a low level of proliferation compared to nontreated cells (p < 0.01). There was a change in an expression level of 1,128 genes after 48 h treatment. Specifically, genes associated with the cell cycle, DNA replication, and pyrimidine and purine metabolisms, were down-regulated in cells treated with MFP, which resulted in reduction of cell proliferation. MFP treatment also up-regulated genes associated with lysosome and phagosome function, which are both required for macrophage activities. We speculate that activation of macrophages by mica is in part derived from up-regulation of these pathways.
Authors: Somaieh Ahmadian, Jaleh Barar, Amir Ata Saei, Mohammad Amin Abolghassemi Fakhree, Yadollah Omidi.
Published: 04-03-2009
ABSTRACT
Cytotoxicity of the futuristic nanogenomedicine (e.g., short interfering RNA and antisense) may hamper its clinical development. Of these, the gene-based medicine and/or its carrier may elicit cellular toxicity. For assessment of such cytotoxicity, a common methodology is largely dependent upon utilization of the 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay which has been widely used as a colorimetric approach based on the activity of mitochondrial dehydrogenase enzymes in cells. In this current investigation, MCF-7 cells were inoculated in 96-well plate and at 50% confluency they were treated with different nanopolyplexes and subjected to MTT assay after 24 hours. Water soluble yellow MTT is metabolized by the metabolically active cells to the water insoluble purple formazan, which is further dissolved in dimethylsulfoxide and Sornson s buffer pH 10.5. The resultant product can be quantified by spectrophotometry using a plate reader at 570 nm.
26 Related JoVE Articles!
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
51601
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Visualizing Non-lytic Exocytosis of Cryptococcus neoformans from Macrophages Using Digital Light Microscopy
Authors: Sabriya Stukes, Arturo Casadevall.
Institutions: Albert Einstein College of Medicine.
Many aspects of the infection of macrophages by Cryptococcus neoformans have been extensively studied and well defined. However, one particular interaction that is not clearly understood is non-lytic exocytosis. In this process, yeast cells are released into the extracellular space by a poorly understood mechanism that leaves both the macrophage and Cn viable. Here, we describe how to follow a large number of individually infected macrophages for a 24 hr infection period by time-lapsed microscopy. Infected macrophages are housed in a heating chamber with a CO2 atmosphere attached to a microscope that provides the same conditions as a cell-culture incubator. Live digital microscopy can provide information about the dynamic interactions between a host and pathogen that is not available from static images. Being able to visualize each infected cell can provide clues as to how macrophages handle fungal infections, and vice versa. This technique is a powerful tool in studying the dynamics that are behind a complex phenomenon.
Immunology, Issue 92, Non-Lytic Exocytosis, Macrophages, C. neoformans, Fungus, Host-Pathogen Interactions
52084
Play Button
Electroporation of Functional Bacterial Effectors into Mammalian Cells
Authors: Ryan L. Sontag, Cosmin Mihai, Galya Orr, Alexei Savchenko, Tatiana Skarina, Hong Cui, John R. Cort, Joshua N. Adkins, Roslyn N. Brown.
Institutions: Pacific Northwest National Laboratory, Pacific Northwest National Laboratory, University of Toronto, Washington State University.
The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high-throughput characterization of pathogen proteins in host cells including subcellular targeting and function of virulence proteins.
Immunology, Issue 95, electroporation, protein, transfection, expression, localization, confocal microscopy, Salmonella, effector
52296
Play Button
Macrophage Cholesterol Depletion and Its Effect on the Phagocytosis of Cryptococcus neoformans
Authors: Arielle M. Bryan, Amir M. Farnoud, Visesato Mor, Maurizio Del Poeta.
Institutions: Stony Brook University.
Cryptococcosis is a life-threatening infection caused by pathogenic fungi of the genus Cryptococcus. Infection occurs upon inhalation of spores, which are able to replicate in the deep lung. Phagocytosis of Cryptococcus by macrophages is one of the ways that the disease is able to spread into the central nervous system to cause lethal meningoencephalitis. Therefore, study of the association between Cryptococcus and macrophages is important to understanding the progression of the infection. The present study describes a step-by-step protocol to study macrophage infectivity by C. neoformansin vitro. Using this protocol, the role of host sterols on host-pathogen interactions is studied. Different concentrations of methyl--cyclodextrin (MCD) were used to deplete cholesterol from murine reticulum sarcoma macrophage-like cell line J774A.1. Cholesterol depletion was confirmed and quantified using both a commercially available cholesterol quantification kit and thin layer chromatography. Cholesterol depleted cells were activated using Lipopolysacharide (LPS) and Interferon gamma (IFNγ) and infected with antibody-opsonized Cryptococcus neoformans wild-type H99 cells at an effector-to-target ratio of 1:1. Infected cells were monitored after 2 hr of incubation with C. neoformans and their phagocytic index was calculated. Cholesterol depletion resulted in a significant reduction in the phagocytic index. The presented protocols offer a convenient method to mimic the initiation of the infection process in a laboratory environment and study the role of host lipid composition on infectivity.
Immunology, Issue 94, Infection, phagocytosis, Cryptococcus, cholesterol, cyclodextrin, macrophages
52432
Play Button
Forward Genetics Screens Using Macrophages to Identify Toxoplasma gondii Genes Important for Resistance to IFN-γ-Dependent Cell Autonomous Immunity
Authors: Odaelys Walwyn, Sini Skariah, Brian Lynch, Nathaniel Kim, Yukari Ueda, Neal Vohora, Josh Choe, Dana G. Mordue.
Institutions: New York Medical College.
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified parasite gene to establishment of chronic infection.
Immunology, Issue 97, Toxoplasma, macrophages, innate immunity, intracellular pathogen, immune evasion, infectious disease, forward genetics, parasite
52556
Play Button
Novel Atomic Force Microscopy Based Biopanning for Isolation of Morphology Specific Reagents against TDP-43 Variants in Amyotrophic Lateral Sclerosis
Authors: Stephanie M. Williams, Lalitha Venkataraman, Huilai Tian, Galam Khan, Brent T. Harris, Michael R. Sierks.
Institutions: Arizona State University, Georgetown University Medical Center, Georgetown University Medical Center.
Because protein variants play critical roles in many diseases including TDP-43 in Amyotrophic Lateral Sclerosis (ALS), alpha-synuclein in Parkinson’s disease and beta-amyloid and tau in Alzheimer’s disease, it is critically important to develop morphology specific reagents that can selectively target these disease-specific protein variants to study the role of these variants in disease pathology and for potential diagnostic and therapeutic applications. We have developed novel atomic force microscopy (AFM) based biopanning techniques that enable isolation of reagents that selectively recognize disease-specific protein variants. There are two key phases involved in the process, the negative and positive panning phases. During the negative panning phase, phages that are reactive to off-target antigens are eliminated through multiple rounds of subtractive panning utilizing a series of carefully selected off-target antigens. A key feature in the negative panning phase is utilizing AFM imaging to monitor the process and confirm that all undesired phage particles are removed. For the positive panning phase, the target antigen of interest is fixed on a mica surface and bound phages are eluted and screened to identify phages that selectively bind the target antigen. The target protein variant does not need to be purified providing the appropriate negative panning controls have been used. Even target protein variants that are only present at very low concentrations in complex biological material can be utilized in the positive panning step. Through application of this technology, we acquired antibodies to protein variants of TDP-43 that are selectively found in human ALS brain tissue. We expect that this protocol should be applicable to generating reagents that selectively bind protein variants present in a wide variety of different biological processes and diseases.
Bioengineering, Issue 96, Amyotrophic Lateral Sclerosis, TDP-43, Biopanning, Atomic Force Microscopy, scFv, Neurodegenerative diseases
52584
Play Button
Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability
Authors: Jodi R. Schilz, K. J. Reddy, Sreejayan Nair, Thomas E. Johnson, Ronald B. Tjalkens, Kem P. Krueger, Suzanne Clark.
Institutions: University of New Mexico, University of Wyoming, University of Wyoming, Colorado State University, Colorado State University, California Northstate University.
In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters.
Environmental Sciences, Issue 100, Energy production, uranium in situ recovery, water decontamination, nanoparticles, toxicity, cytotoxicity, in vitro cell culture
52715
Play Button
Transfecting RAW264.7 Cells with a Luciferase Reporter Gene
Authors: Sylvia T. Cheung, Soroush Shakibakho, Eva Y. So, Alice L-F Mui.
Institutions: Vancouver Costal Health Research Institute, University of British Columbia, University of British Columbia.
Transfection of desired genetic materials into cells is an inevitable procedure in biomedical research studies. While numerous methods have been described, certain types of cells are resistant to many of these methods and yield low transfection efficiency1, potentially hindering research in those cell types. In this protocol, we present an optimized transfection procedure to introduce luciferase reporter genes as a plasmid DNA into the RAW264.7 macrophage cell line. Two different types of transfection reagents (lipid-based and polyamine-based) are described, and important notes are given throughout the protocol to ensure that the RAW264.7 cells are minimally altered by the transfection procedure and any experimental data obtained are the direct results of the experimental treatment. While transfection efficiency may not be higher compared to other transfection methods, the described procedure is robust enough for detecting luciferase signal in RAW264.7 without changing the physiological response of the cells to stimuli.
Cellular Biology, Issue 100, Transfection, RAW264.7, macrophages, luciferase, lipopolysaacharide, Interleukin-10, lipid-based transfection, polyamine-based transfection
52807
Play Button
Quantification of Cytosolic vs. Vacuolar Salmonella in Primary Macrophages by Differential Permeabilization
Authors: Etienne Meunier, Petr Broz.
Institutions: University of Basel.
Intracellular bacterial pathogens can replicate in the cytosol or in specialized pathogen-containing vacuoles (PCVs). To reach the cytosol, bacteria like Shigella flexneri and Francisella novicida need to induce the rupture of the phagosome. In contrast, Salmonella typhimurium replicates in a vacuolar compartment, known as Salmonella-containing vacuole (SCV). However certain mutants of Salmonella fail to maintain SCV integrity and are thus released into the cytosol. The percentage of cytosolic vs. vacuolar bacteria on the level of single bacteria can be measured by differential permeabilization, also known as phagosome-protection assay. The approach makes use of the property of detergent digitonin to selectively bind cholesterol. Since the plasma membrane contains more cholesterol than other cellular membranes, digitonin can be used to selectively permeabilize the plasma membrane while leaving intracellular membranes intact. In brief, following infection with the pathogen expressing a fluorescent marker protein (e.g. mCherry among others), the plasma membrane of host cells is permeabilized with a short incubation in digitonin containing buffer. Cells are then washed and incubated with a primary antibody (coupled to a fluorophore of choice) directed against the bacterium of choice (e.g. anti-Salmonella-FITC) and washed again. If unmarked bacteria are used, an additional step can be done, in which all membranes are permeabilized and all bacteria stained with a corresponding antibody. Following the staining, the percentage of vacuolar and cytosolic bacteria can be quantified by FACS or microscopy by counting single or double-positive events. Here we provide experimental details for use of this technique with the bacterium Salmonella typhimurium. The advantage of this assay is that, in contrast to other assay, it provides a quantification on the level of single bacteria, and if analyzed by microscopy provides the exact number of cytosolic and vacuolar bacteria in a given cell.
Immunology, Issue 101, pathogen-containing vacuoles, infection, immunity, microbiology, bacteria, vacuolar rupture, microscopy, pathogens, molecular biology, Salmonella typhimurium, macrophages
52960
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation
Authors: Karthik Pillai, Fernando Navarro Arzate, Wei Zhang, Scott Renneckar.
Institutions: Virginia Tech, Virginia Tech, Illinois Institute of Technology- Moffett Campus, University of Guadalajara, Virginia Tech, Virginia Tech.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.
Plant Biology, Issue 88, nanocellulose, thin films, quartz crystal microbalance, layer-by-layer, LbL
51257
Play Button
Study of Phagolysosome Biogenesis in Live Macrophages
Authors: Marc Bronietzki, Bahram Kasmapour, Maximiliano Gabriel Gutierrez.
Institutions: Helmholtz Centre for Infection Research, National Institute for Medical Research.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.
Immunology, Issue 85, Lysosome, Phagosome, phagolysosome, live-cell imaging, phagocytes, macrophages
51201
Play Button
The Microfluidic Probe: Operation and Use for Localized Surface Processing
Authors: Cecile M. Perrault, Mohammad A. Qasaimeh, David Juncker.
Institutions: McGill University.
Microfluidic devices allow assays to be performed using minute amounts of sample and have recently been used to control the microenvironment of cells. Microfluidics is commonly associated with closed microchannels which limit their use to samples that can be introduced, and cultured in the case of cells, within a confined volume. On the other hand, micropipetting system have been used to locally perfuse cells and surfaces, notably using push-pull setups where one pipette acts as source and the other one as sink, but the confinement of the flow is difficult in three dimensions. Furthermore, pipettes are fragile and difficult to position and hence are used in static configuration only. The microfluidic probe (MFP) circumvents the constraints imposed by the construction of closed microfluidic channels and instead of enclosing the sample into the microfluidic system, the microfluidic flow can be directly delivered onto the sample, and scanned across the sample, using the MFP. . The injection and aspiration openings are located within a few tens of micrometers of one another so that a microjet injected into the gap is confined by the hydrodynamic forces of the surrounding liquid and entirely aspirated back into the other opening. The microjet can be flushed across the substrate surface and provides a precise tool for localized deposition/delivery of reagents which can be used over large areas by scanning the probe across the surface. In this video we present the microfluidic probe1 (MFP). We explain in detail how to assemble the MFP, mount it atop an inverted microscope, and align it relative to the substrate surface, and finally show how to use it to process a substrate surface immersed in a buffer.
Bioengineering, Issue 28, microfluidics, integrated microfluidic system, bioMEMs
1418
Play Button
Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death
Authors: Aja M. Rieger, Kimberly L. Nelson, Jeffrey D. Konowalchuk, Daniel R. Barreda.
Institutions: University of Alberta, University of Alberta.
Studies of cellular apoptosis have been significantly impacted since the introduction of flow cytometry-based methods. Propidium iodide (PI) is widely used in conjunction with Annexin V to determine if cells are viable, apoptotic, or necrotic through differences in plasma membrane integrity and permeability1,2. The Annexin V/ PI protocol is a commonly used approach for studying apoptotic cells3. PI is used more often than other nuclear stains because it is economical, stable and a good indicator of cell viability, based on its capacity to exclude dye in living cells 4,5. The ability of PI to enter a cell is dependent upon the permeability of the membrane; PI does not stain live or early apoptotic cells due to the presence of an intact plasma membrane 1,2,6. In late apoptotic and necrotic cells, the integrity of the plasma and nuclear membranes decreases7,8, allowing PI to pass through the membranes, intercalate into nucleic acids, and display red fluorescence 1,2,9. Unfortunately, we find that conventional Annexin V/ PI protocols lead to a significant number of false positive events (up to 40%), which are associated with PI staining of RNA within the cytoplasmic compartment10. Primary cells and cell lines in a broad range of animal models are affected, with large cells (nuclear: cytoplasmic ratios <0.5) showing the highest occurrence10. Herein, we demonstrate a modified Annexin V/ PI method that provides a significant improvement for assessment of cell death compared to conventional methods. This protocol takes advantage of changes in cellular permeability during cell fixing to promote entry of RNase A into cells following staining. Both the timing and concentration of RNase A have been optimized for removal of cytoplasmic RNA. The result is a significant improvement over conventional Annexin V/ PI protocols (< 5% events with cytoplasmic PI staining).
Cellular Biology, Issue 50, Apoptosis, cell death, propidium iodide, Annexin V, necrosis, immunology
2597
Play Button
Production and Detection of Reactive Oxygen Species (ROS) in Cancers
Authors: Danli Wu, Patricia Yotnda.
Institutions: Baylor College of Medicine.
Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H2O2 (hydrogen peroxide), NO (nitric oxide), O2- (oxide anion), peroxynitrite (ONOO-), hydrochlorous acid (HOCl), and hydroxyl radical (OH-). Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases 1, autoimmune diseases 2, etc…) but also during physiological (non-pathological) situations such as cellular metabolism 3, 4. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation 5, 6, migration 7 etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants). Free radicals are beneficial in low amounts 3. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation 8. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise 9, 10. Several publications have also demonstrated that ROS are involved in insulin sensitivity 11, 12. Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS.
Medicine, Issue 57, reactive oxygen species (ROS), stress, ischemia, cancer, chemotherapy, immune response
3357
Play Button
Cholesterol Efflux Assay
Authors: Hann Low, Anh Hoang, Dmitri Sviridov.
Institutions: Baker IDI Heart and Diabetes Institute.
Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis 1. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare 2. Excessive cholesterol is more common problem 3. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases.
Medicine, Issue 61, Lipids, lipoproteins, atherosclerosis, trafficking, cholesterol
3810
Play Button
A Parasite Rescue and Transformation Assay for Antileishmanial Screening Against Intracellular Leishmania donovani Amastigotes in THP1 Human Acute Monocytic Leukemia Cell Line
Authors: Surendra K. Jain, Rajnish Sahu, Larry A. Walker, Babu L. Tekwani.
Institutions: University of Mississippi, University of Mississippi.
Leishmaniasis is one of the world's most neglected diseases, largely affecting the poorest of the poor, mainly in developing countries. Over 350 million people are considered at risk of contracting leishmaniasis, and approximately 2 million new cases occur yearly1. Leishmania donovani is the causative agent for visceral leishmaniasis (VL), the most fatal form of the disease. The choice of drugs available to treat leishmaniasis is limited 2;current treatments provide limited efficacy and many are toxic at therapeutic doses. In addition, most of the first line treatment drugs have already lost their utility due to increasing multiple drug resistance 3. The current pipeline of anti-leishmanial drugs is also severely depleted. Sustained efforts are needed to enrich a new anti-leishmanial drug discovery pipeline, and this endeavor relies on the availability of suitable in vitro screening models. In vitro promastigotes 4 and axenic amastigotes assays5 are primarily used for anti-leishmanial drug screening however, may not be appropriate due to significant cellular, physiological, biochemical and molecular differences in comparison to intracellular amastigotes. Assays with macrophage-amastigotes models are considered closest to the pathophysiological conditions of leishmaniasis, and are therefore the most appropriate for in vitro screening. Differentiated, non-dividing human acute monocytic leukemia cells (THP1) (make an attractive) alternative to isolated primary macrophages and can be used for assaying anti-leishmanial activity of different compounds against intracellular amastigotes. Here, we present a parasite-rescue and transformation assay with differentiated THP1 cells infected in vitro with Leishmania donovani for screening pure compounds and natural products extracts and determining the efficacy against the intracellular Leishmania amastigotes. The assay involves the following steps: (1) differentiation of THP1 cells to non-dividing macrophages, (2) infection of macrophages with L. donovani metacyclic promastigotes, (3) treatment of infected cells with test drugs, (4) controlled lysis of infected macrophages, (5) release/rescue of amastigotes and (6) transformation of live amastigotes to promastigotes. The assay was optimized using detergent treatment for controlled lysis of Leishmania-infected THP1 cells to achieve almost complete rescue of viable intracellular amastigotes with minimal effect on their ability to transform to promastigotes. Different macrophage:promastigotes ratios were tested to achieve maximum infection. Quantification of the infection was performed through transformation of live, rescued Leishmania amastigotes to promastigotes and evaluation of their growth by an alamarBlue fluorometric assay in 96-well microplates. This assay is comparable to the currently-used microscopic, transgenic reporter gene and digital-image analysis assays. This assay is robust and measures only the live intracellular amastigotes compared to reporter gene and image analysis assays, which may not differentiate between live and dead amastigotes. Also, the assay has been validated with a current panel of anti-leishmanial drugs and has been successfully applied to large-scale screening of pure compounds and a library of natural products fractions (Tekwani et al. unpublished).
Infection, Issue 70, Immunology, Infectious Diseases, Molecular Biology, Cellular Biology, Pharmacology, Leishmania donovani, Visceral Leishmaniasis, THP1 cells, Drug Screening, Amastigotes, Antileishmanial drug assay
4054
Play Button
Plaque Assay for Murine Norovirus
Authors: Mariam B. Gonzalez-Hernandez, Juliana Bragazzi Cunha, Christiane E. Wobus.
Institutions: University of Michigan, Ann Arbor.
Murine norovirus (MNV) is the only member of the Norovirus genus that efficiently grows in tissue culture 1, 2. Cell lysis and cytopathic effect (CPE) are observed during MNV-1 infection of murine dendritic cells or macrophages 1. This property of MNV-1 can be used to quantify the number of infectious particles in a given sample by performing a plaque assay 1. The plaque assay relies on the ability of MNV-1 to lyse cells and to form holes in a confluent cell monolayer, which are called plaques 3. Multiple techniques can be used to detect viral infections in tissue culture, harvested tissue, clinical, and environmental samples, but not all measure the number of infectious particles (e.g. qRT-PCR). One way to quantify infectious viral particles is to perform a plaque assay 3, which will be described in detail below. A variation on the MNV plaque assay is the fluorescent focus assay, where MNV antigen is immunostained in cell monolayers 4. This assay can be faster, since viral antigen expression precedes plaque formation. It is also useful for titrating viruses unable to form plaques. However, the fluorescent focus assay requires additional resources beyond those of the plaque assay, such as antibodies and a microscope to count focus-forming units. Infectious MNV can also be quantified by determining the 50% Tissue Culture Infective Dose (TCID50) 3. This assay measures the amount of virus required to produce CPE in 50% of inoculated tissue culture cells by endpoint titration 5. However, its limit of detection is higher compared to a plaque assay 4. In this article, we describe a plaque assay protocol that can be used to effectively determine the number of infectious MNV particles present in biological or environmental samples 1, 4, 6. This method is based on the preparation of 10-fold serial dilutions of MNV-containing samples, which are used to inoculate a monolayer of permissive cells (RAW 264.7 murine macrophage cells). Virus is allowed to attach to the cell monolayer for a given period of time and then aspirated before covering cells with a mixture of agarose and cell culture media. The agar enables the spread of viral progeny to neighboring cells while limiting spread to distantly located cells. Consequently, infected cells are lysed and form holes in the monolayer known as plaques. Upon sufficient spread of virus, plaques become visible following staining of cells with dyes, like neutral red, methylene blue, or crystal violet. At low dilutions, each plaque originates from one infectious viral particle and its progeny, which spread to neighboring cells. Thus, counting the number of plaques allows one to calculate plaque-forming units (PFU) present in the undiluted sample 3.
Virology, Issue 66, Immunology, Infection, Medicine, Microbiology, Molecular Biology, plaque assay, norovirus, murine norovirus, MNV, murine macrophages, RAW 264.7 cells
4297
Play Button
Live-cell Video Microscopy of Fungal Pathogen Phagocytosis
Authors: Leanne E. Lewis, Judith M. Bain, Blessing Okai, Neil A.R. Gow, Lars Peter Erwig.
Institutions: University of Aberdeen, University of Aberdeen.
Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms.
Infection, Issue 71, Immunology, Microbiology, Medicine, Cellular Biology, Molecular Biology, Infectious Diseases, Mycoses, Candidiasis, Bacterial Infections and Mycoses, Immune System Diseases, Live-cell imaging, phagocytosis, Candida albicans, host-pathogen interaction, pathogen, pathogen-associated molecular patterns, pattern recognition receptors, macrophage, fungus
50196
Play Button
Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages
Authors: Wei Ying, Patali S. Cheruku, Fuller W. Bazer, Stephen H. Safe, Beiyan Zhou.
Institutions: Texas A&M University, Texas A&M University, Texas A&M University.
The article describes a readily easy adaptive in vitro model to investigate macrophage polarization. In the presence of GM-CSF/M-CSF, hematopoietic stem/progenitor cells from the bone marrow are directed into monocytic differentiation, followed by M1 or M2 stimulation. The activation status can be tracked by changes in cell surface antigens, gene expression and cell signaling pathways.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, Genetics, Biomedical Engineering, biology (general), genetics (animal and plant), immunology, life sciences, Life Sciences (General), macrophage polarization, bone marrow derived macrophage, flow cytometry, PCR, animal model
50323
Play Button
Determination of Tolerable Fatty Acids and Cholera Toxin Concentrations Using Human Intestinal Epithelial Cells and BALB/c Mouse Macrophages
Authors: Farshad Tamari, Joanna Tychowski, Laura Lorentzen.
Institutions: Kingsborough Community College, University of Texas at Austin, Kean University.
The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections.
Infection, Issue 75, Medicine, Immunology, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Bioengineering, Bacterial Infections and Mycoses, Mucosal immunity, oleic acid, linoleic acid, linolenic acid, cholera toxin, cholera, fatty acids, tissue culture, MTT assay, mouse, animal model
50491
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Imaging Cell Membrane Injury and Subcellular Processes Involved in Repair
Authors: Aurelia Defour, S. C. Sreetama, Jyoti K. Jaiswal.
Institutions: Children's National Medical Center, George Washington University.
The ability of injured cells to heal is a fundamental cellular process, but cellular and molecular mechanisms involved in healing injured cells are poorly understood. Here assays are described to monitor the ability and kinetics of healing of cultured cells following localized injury. The first protocol describes an end point based approach to simultaneously assess cell membrane repair ability of hundreds of cells. The second protocol describes a real time imaging approach to monitor the kinetics of cell membrane repair in individual cells following localized injury with a pulsed laser. As healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of injury, the third protocol describes the use of above end point based approach to assess one such trafficking event (lysosomal exocytosis) in hundreds of cells injured simultaneously and the last protocol describes the use of pulsed laser injury together with TIRF microscopy to monitor the dynamics of individual subcellular compartments in injured cells at high spatial and temporal resolution. While the protocols here describe the use of these approaches to study the link between cell membrane repair and lysosomal exocytosis in cultured muscle cells, they can be applied as such for any other adherent cultured cell and subcellular compartment of choice.
Biochemistry, Issue 85, cell injury, lysosome exocytosis, repair, calcium, imaging, total internal reflection fluorescence (TIRF) microscopy, laser ablation
51106
Play Button
Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation
Authors: Michelle A. Pillers, Rebecca Shute, Adam Farchone, Keenan P. Linder, Rose Doerfler, Corey Gavin, Valerie Goss, Marya Lieberman.
Institutions: University of Notre Dame, University of Notre Dame, Chicago State University, Ivy Tech Community College, South Bend, Indiana.
The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described.
Chemistry, Issue 101, Nanostructures, substrate, DNA origami, mica, silicon, biomolecule, self-assembly
52972
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.