JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Early olfactory environment influences social behaviour in adult Octodon degus.
PUBLISHED: 02-12-2015
We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.
Authors: Erin P. Arbuckle, Gregory D. Smith, Maribel C. Gomez, Joaquin N. Lugo.
Published: 05-05-2015
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.
24 Related JoVE Articles!
Play Button
Olfactory Behavioral Testing in the Adult Mouse
Authors: Rochelle M. Witt, Meghan M. Galligan, Jennifer R. Despinoy, Rosalind Segal.
Institutions: Dana Farber Cancer Institute, Harvard Medical School.
The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.
Neuroscience, Issue 23, olfaction, behavioral phenotyping, olfactory preference, olfactory sensitivity, sensory ability
Play Button
Olfactory Assays for Mouse Models of Neurodegenerative Disease
Authors: Andrew M. Lehmkuhl, Emily R. Dirr, Sheila M. Fleming.
Institutions: University of Cincinnati, University of Cincinnati, Wright State University.
In many neurodegenerative diseases and particularly in Parkinson’s disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson’s disease as well as in testing potential disease-modifying therapies.
Neuroscience, Issue 90, olfaction, mouse, Parkinson’s disease, detection, discrimination, sniffing
Play Button
A Lateralized Odor Learning Model in Neonatal Rats for Dissecting Neural Circuitry Underpinning Memory Formation
Authors: Christine J. Fontaine, Bandhan Mukherjee, Gillian L. Morrison, Qi Yuan.
Institutions: Faculty of Medicine, Memorial University, University of Victoria.
Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.
Neuroscience, Issue 90, lateralized odor learning, rats, memory, nose plug, olfactory bulb, piriform cortex, phosphorylated CREB
Play Button
A Procedure to Observe Context-induced Renewal of Pavlovian-conditioned Alcohol-seeking Behavior in Rats
Authors: Jean-Marie Maddux, Franca Lacroix, Nadia Chaudhri.
Institutions: Concordia University.
Environmental contexts in which drugs of abuse are consumed can trigger craving, a subjective Pavlovian-conditioned response that can facilitate drug-seeking behavior and prompt relapse in abstinent drug users. We have developed a procedure to study the behavioral and neural processes that mediate the impact of context on alcohol-seeking behavior in rats. Following acclimation to the taste and pharmacological effects of 15% ethanol in the home cage, male Long-Evans rats receive Pavlovian discrimination training (PDT) in conditioning chambers. In each daily (Mon-Fri) PDT session, 16 trials each of two different 10 sec auditory conditioned stimuli occur. During one stimulus, the CS+, 0.2 ml of 15% ethanol is delivered into a fluid port for oral consumption. The second stimulus, the CS-, is not paired with ethanol. Across sessions, entries into the fluid port during the CS+ increase, whereas entries during the CS- stabilize at a lower level, indicating that a predictive association between the CS+ and ethanol is acquired. During PDT each chamber is equipped with a specific configuration of visual, olfactory and tactile contextual stimuli. Following PDT, extinction training is conducted in the same chamber that is now equipped with a different configuration of contextual stimuli. The CS+ and CS- are presented as before, but ethanol is withheld, which causes a gradual decline in port entries during the CS+. At test, rats are placed back into the PDT context and presented with the CS+ and CS- as before, but without ethanol. This manipulation triggers a robust and selective increase in the number of port entries made during the alcohol predictive CS+, with no change in responding during the CS-. This effect, referred to as context-induced renewal, illustrates the powerful capacity of contexts associated with alcohol consumption to stimulate alcohol-seeking behavior in response to Pavlovian alcohol cues.
Behavior, Issue 91, Behavioral neuroscience, alcoholism, relapse, addiction, Pavlovian conditioning, ethanol, reinstatement, discrimination, conditioned approach
Play Button
Straightforward Assay for Quantification of Social Avoidance in Drosophila melanogaster
Authors: Robert W. Fernandez, Marat Nurilov, Omar Feliciano, Ian S. McDonald, Anne F. Simon.
Institutions: Yale University, York College/CUNY, Western Ontario University.
Drosophila melanogaster is an emerging model to study different aspects of social interactions. For example, flies avoid areas previously occupied by stressed conspecifics due to an odorant released during stress known as the Drosophila stress odorant (dSO). Through the use of the T-maze apparatus, one can quantify the avoidance of the dSO by responder flies in a very affordable and robust assay. Conditions necessary to obtain a strong performance are presented here. A stressful experience is necessary for the flies to emit dSO, as well as enough emitter flies to cause a robust avoidance response to the presence of dSO. Genetic background, but not their group size, strongly altered the avoidance of the dSO by the responder flies. Canton-S and Elwood display a higher performance in avoiding the dSO than Oregon and Samarkand strains. This behavioral assay will allow identification of mechanisms underlying this social behavior, and the assessment of the influence of genes and environmental conditions on both emission and avoidance of the dSO. Such an assay can be included in batteries of simple diagnostic tests used to identify social deficiencies of mutants or environmental conditions of interest.
Neuroscience, Issue 94, social behavior, social avoidance, Drosophila melanogaster, Drosophila, Stress Odorant - dSO, T-maze apparatus, neurogenetics
Play Button
Operant Procedures for Assessing Behavioral Flexibility in Rats
Authors: Anne Marie Brady, Stan B. Floresco.
Institutions: St. Mary's College of Maryland, University of British Columbia.
Executive functions consist of multiple high-level cognitive processes that drive rule generation and behavioral selection. An emergent property of these processes is the ability to adjust behavior in response to changes in one’s environment (i.e., behavioral flexibility). These processes are essential to normal human behavior, and may be disrupted in diverse neuropsychiatric conditions, including schizophrenia, alcoholism, depression, stroke, and Alzheimer’s disease. Understanding of the neurobiology of executive functions has been greatly advanced by the availability of animal tasks for assessing discrete components of behavioral flexibility, particularly strategy shifting and reversal learning. While several types of tasks have been developed, most are non-automated, labor intensive, and allow testing of only one animal at a time. The recent development of automated, operant-based tasks for assessing behavioral flexibility streamlines testing, standardizes stimulus presentation and data recording, and dramatically improves throughput. Here, we describe automated strategy shifting and reversal tasks, using operant chambers controlled by custom written software programs. Using these tasks, we have shown that the medial prefrontal cortex governs strategy shifting but not reversal learning in the rat, similar to the dissociation observed in humans. Moreover, animals with a neonatal hippocampal lesion, a neurodevelopmental model of schizophrenia, are selectively impaired on the strategy shifting task but not the reversal task. The strategy shifting task also allows the identification of separate types of performance errors, each of which is attributable to distinct neural substrates. The availability of these automated tasks, and the evidence supporting the dissociable contributions of separate prefrontal areas, makes them particularly well-suited assays for the investigation of basic neurobiological processes as well as drug discovery and screening in disease models.
Behavior, Issue 96, executive function, behavioral flexibility, prefrontal cortex, strategy shifting, reversal learning, behavioral neuroscience, schizophrenia, operant
Play Button
Moderate Prenatal Alcohol Exposure and Quantification of Social Behavior in Adult Rats
Authors: Derek A. Hamilton, Christy M. Magcalas, Daniel Barto, Clark W. Bird, Carlos I. Rodriguez, Brandi C. Fink, Sergio M. Pellis, Suzy Davies, Daniel D. Savage.
Institutions: University of New Mexico, University of New Mexico, University of New Mexico, University of Lethbridge.
Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE1, and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.
Neuroscience, Issue 94, Aggression, Alcohol Teratogenesis, Alcohol-related Neurodevelopmental Disorders, ARND, Fetal Alcohol Spectrum Disorders, FASD, Fetal Alcohol Syndrome, FAS, Social interaction
Play Button
The Modified Hole Board - Measuring Behavior, Cognition and Social Interaction in Mice and Rats
Authors: Maaike Labots, Hein A. Van Lith, Frauke Ohl, Saskia S. Arndt.
Institutions: Utrecht University, Brain Center Rudolf Magnus.
This protocol describes the modified hole board (mHB), which combines features from a traditional hole board and open field and is designed to measure multiple dimensions of unconditioned behavior in small laboratory mammals (e.g., mice, rats, tree shrews and small primates). This paradigm is a valuable alternative for the use of a behavioral test battery, since a broad behavioral spectrum of an animal’s behavioral profile can be investigated in one single test. The apparatus consists of a box, representing the ‘protected’ area, separated from a group compartment. A board, on which small cylinders are staggered in three lines, is placed in the center of the box, representing the ‘unprotected’ area of the set-up. The cognitive abilities of the animals can be measured by baiting some cylinders on the board and measuring the working and reference memory. Other unconditioned behavior, such as activity-related-, anxiety-related- and social behavior, can be observed using this paradigm. Behavioral flexibility and the ability to habituate to a novel environment can additionally be observed by subjecting the animals to multiple trials in the mHB, revealing insight into the animals’ adaptive capacities. Due to testing order effects in a behavioral test battery, naïve animals should be used for each individual experiment. By testing multiple behavioral dimensions in a single paradigm and thereby circumventing this issue, the number of experimental animals used is reduced. Furthermore, by avoiding social isolation during testing and without the need to food deprive the animals, the mHB represents a behavioral test system, inducing if any, very low amount of stress.
Behavior, Issue 98, Anxiety, behavior, cognition, exploration, locomotion, mice, modified hole board, rats, social interaction.
Play Button
The Double-H Maze: A Robust Behavioral Test for Learning and Memory in Rodents
Authors: Robert D. Kirch, Richard C. Pinnell, Ulrich G. Hofmann, Jean-Christophe Cassel.
Institutions: University Hospital Freiburg, UMR 7364 Université de Strasbourg, CNRS, Neuropôle de Strasbourg.
Spatial cognition research in rodents typically employs the use of maze tasks, whose attributes vary from one maze to the next. These tasks vary by their behavioral flexibility and required memory duration, the number of goals and pathways, and also the overall task complexity. A confounding feature in many of these tasks is the lack of control over the strategy employed by the rodents to reach the goal, e.g., allocentric (declarative-like) or egocentric (procedural) based strategies. The double-H maze is a novel water-escape memory task that addresses this issue, by allowing the experimenter to direct the type of strategy learned during the training period. The double-H maze is a transparent device, which consists of a central alleyway with three arms protruding on both sides, along with an escape platform submerged at the extremity of one of these arms. Rats can be trained using an allocentric strategy by alternating the start position in the maze in an unpredictable manner (see protocol 1; §4.7), thus requiring them to learn the location of the platform based on the available allothetic cues. Alternatively, an egocentric learning strategy (protocol 2; §4.8) can be employed by releasing the rats from the same position during each trial, until they learn the procedural pattern required to reach the goal. This task has been proven to allow for the formation of stable memory traces. Memory can be probed following the training period in a misleading probe trial, in which the starting position for the rats alternates. Following an egocentric learning paradigm, rats typically resort to an allocentric-based strategy, but only when their initial view on the extra-maze cues differs markedly from their original position. This task is ideally suited to explore the effects of drugs/perturbations on allocentric/egocentric memory performance, as well as the interactions between these two memory systems.
Behavior, Issue 101, Double-H maze, spatial memory, procedural memory, consolidation, allocentric, egocentric, habits, rodents, video tracking system
Play Button
Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment
Authors: Daniel S. Weitzner, Elizabeth B. Engler-Chiurazzi, Linda A. Kotilinek, Karen Hsiao Ashe, Miranda Nicole Reed.
Institutions: West Virginia University, West Virginia University, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, GRECC, VA Medical Center, West Virginia University.
The Morris water maze (MWM) is a commonly used task to assess hippocampal-dependent spatial learning and memory in transgenic mouse models of disease, including neurocognitive disorders such as Alzheimer’s disease. However, the background strain of the mouse model used can have a substantial effect on the observed behavioral phenotype, with some strains exhibiting superior learning ability relative to others. To ensure differences between transgene negative and transgene positive mice can be detected, identification of a training procedure sensitive to the background strain is essential. Failure to tailor the MWM protocol to the background strain of the mouse model may lead to under- or over- training, thereby masking group differences in probe trials. Here, a MWM protocol tailored for use with the F1 FVB/N x 129S6 background is described. This is a frequently used background strain to study the age-dependent effects of mutant P301L tau (rTg(TauP301L)4510 mice) on the memory deficits associated with Alzheimer’s disease. Also described is a strategy to re-optimize, as dictated by the particular testing environment utilized.
Behavior, Issue 100, Spatial learning, spatial reference memory, Morris water maze, Alzheimer’s disease, behavior, tau, hippocampal-dependent learning, rTg4510, Tg2576, strain background, transgenic mouse models
Play Button
Testing Drosophila Olfaction with a Y-maze Assay
Authors: Mégane M. Simonnet, Martine Berthelot-Grosjean, Yael Grosjean.
Institutions: UMR-6265 CNRS, UMR-1324 INRA, Université de Bourgogne.
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Neuroscience, Issue 88, environmental effects (biological, animal and plant), genetics (animal and plant), life sciences, animal biology, behavioral sciences, Y-maze, olfaction, adult, choice, behavior, Drosophila melanogaster
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Elevated Plus Maze for Mice
Authors: Munekazu Komada, Keizo Takao, Tsuyoshi Miyakawa.
Institutions: Graduate School of Medicine, Kyoto University, Fujita Health University.
Although the mouse genome is now completely sequenced, the functions of most of the genes expressed in the brain are not known. The influence of a given gene on a specific behavior can be determined by behavioral analysis of mutant mice. If a target gene is expressed in the brain, behavioral phenotype of the mutant mice could elucidate the genetic mechanism of normal behaviors. The elevated plus maze test is one of the most widely used tests for measuring anxiety-like behavior. The test is based on the natural aversion of mice for open and elevated areas, as well as on their natural spontaneous exploratory behavior in novel environments. The apparatus consists of open arms and closed arms, crossed in the middle perpendicularly to each other, and a center area. Mice are given access to all of the arms and are allowed to move freely between them. The number of entries into the open arms and the time spent in the open arms are used as indices of open space-induced anxiety in mice. Unfortunately, the procedural differences that exist between laboratories make it difficult to duplicate and compare results among laboratories. Here, we present a detailed movie demonstrating our protocol for the elevated plus maze test. In our laboratory, we have assessed more than 90 strains of mutant mice using the protocol shown in the movie. These data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will promote better understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used in different laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.
Neuroscience, Issue 22, Knockout mice, genetically engineered mice, behavioral test, phenotyping
Play Button
A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat
Authors: Ian Q. Whishaw, Boguslaw P. Gorny.
Institutions: Canadian Centre for Behavioural Neuroscience, University of Lethbridge.
Piloting and dead reckoning navigation strategies use very different cue constellations and computational processes (Darwin, 1873; Barlow, 1964; O’Keefe and Nadel, 1978; Mittelstaedt and Mittelstaedt, 1980; Landeau et al., 1984; Etienne, 1987; Gallistel, 1990; Maurer and Séguinot, 1995). Piloting requires the use of the relationships between relatively stable external (visual, olfactory, auditory) cues, whereas dead reckoning requires the integration of cues generated by self-movement. Animals obtain self-movement information from vestibular receptors, and possibly muscle and joint receptors, and efference copy of commands that generate movement. An animal may also use the flows of visual, auditory, and olfactory stimuli caused by its movements. Using a piloting strategy an animal can use geometrical calculations to determine directions and distances to places in its environment, whereas using an dead reckoning strategy it can integrate cues generated by its previous movements to return to a just left location. Dead reckoning is colloquially called "sense of direction" and "sense of distance." Although there is considerable evidence that the hippocampus is involved in piloting (O’Keefe and Nadel, 1978; O’Keefe and Speakman, 1987), there is also evidence from behavioral (Whishaw et al., 1997; Whishaw and Maaswinkel, 1998; Maaswinkel and Whishaw, 1999), modeling (Samsonovich and McNaughton, 1997), and electrophysiological (O’Mare et al., 1994; Sharp et al., 1995; Taube and Burton, 1995; Blair and Sharp, 1996; McNaughton et al., 1996; Wiener, 1996; Golob and Taube, 1997) studies that the hippocampal formation is involved in dead reckoning. The relative contribution of the hippocampus to the two forms of navigation is still uncertain, however. Ordinarily, it is difficult to be certain that an animal is using a piloting versus a dead reckoning strategy because animals are very flexible in their use of strategies and cues (Etienne et al., 1996; Dudchenko et al., 1997; Martin et al., 1997; Maaswinkel and Whishaw, 1999). The objective of the present video demonstrations was to solve the problem of cue specification in order to examine the relative contribution of the hippocampus in the use of these strategies. The rats were trained in a new task in which they followed linear or polygon scented trails to obtain a large food pellet hidden on an open field. Because rats have a proclivity to carry the food back to the refuge, accuracy and the cues used to return to the home base were dependent variables (Whishaw and Tomie, 1997). To force an animal to use a a dead reckoning strategy to reach its refuge with the food, the rats were tested when blindfolded or under infrared light, a spectral wavelength in which they cannot see, and in some experiments the scent trail was additionally removed once an animal reached the food. To examine the relative contribution of the hippocampus, fimbria–fornix (FF) lesions, which disrupt information flow in the hippocampal formation (Bland, 1986), impair memory (Gaffan and Gaffan, 1991), and produce spatial deficits (Whishaw and Jarrard, 1995), were used.
Neuroscience, Issue 26, Dead reckoning, fimbria-fornix, hippocampus, odor tracking, path integration, spatial learning, spatial navigation, piloting, rat, Canadian Centre for Behavioural Neuroscience
Play Button
Recording Behavioral Responses to Reflection in Crayfish
Authors: A. Joffre Mercier, Holly Y. May.
Institutions: Brock University.
Social behavior depends on sensory input from the visual, mechanical and olfactory systems. One important issue concerns the relative roles of each sensory modality in guiding behavior. The role of visual inputs has been examined by isolating visual stimuli from mechanical and chemosensory stimuli. In some studies (Bruski & Dunham, 1987: Delgado-Morales et al., 2004) visual inputs have been removed with blindfolds or low light intensity, and effects of remaining sensory modalities have been elucidated. An alternative approach is to study the effects of visual inputs in the absence of any appropriate mechanical and chemosensory cues. This approach aims to identify the exclusive role of visual inputs. We have used two methods to provide visual stimuli to crayfish without providing chemical and mechanical cues. In one method, crayfish are videotaped in an aquarium where half of the walls are covered in mirrors to provide a reflective environment, and the other half are covered in a non-reflective (matte finish) plastic. This gives the crayfish a choice between reflective and non-reflective environments. The reflective environment provides visual cues in the form of reflected images of the crayfish as it moves throughout half of the tank; these visual cues are missing from the non-reflective half of the tank. An alternative method is to videotape the behavior of crayfish in an aquarium separated by a smaller chamber at each end, with a crayfish in one small chamber providing visual cues and an inert object in the opposite small chamber providing visual input from a non-moving, non-crayfish source. Our published results indicate that responses of crayfish to the reflective environment depend on socialization and dominance rank. Socialized crayfish spent more time in the reflective environment and exhibited certain behaviors more frequently there than in the non-reflective environment; isolated crayfish showed no such differences. Crayfish that were housed in same-sex pairs developed a social rank of either dominant or subordinate. Responses to reflection differed between dominant and subordinate crayfish (May & Mercier, 2006; May & Mercier, 2007). Dominant crayfish spent more time on the reflective side, entered reflective corners more frequently and spent more time in reflective corners compared to the non-reflective side. Subordinate crayfish walked in reverse more often on the reflective side than on the non-reflective side. Preliminary data suggest similar effects from visual cues provided by a crayfish in a small adjoining chamber (May et al., 2008).
JoVE Neuroscience, Issue 39, social, chemosensory, behavior, visual, dominance, crayfish
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Play Button
Shallow Water (Paddling) Variants of Water Maze Tests in Mice
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
When Richard Morris devised his water maze in 19817, most behavioral work was done in rats. However, the greater understanding of mouse genetics led to the mouse becoming increasingly important. But researchers found that some strains of mutant mice were prone to problems like passively floating or diving when they were tested in the Morris water maze11. This was unsurprising considering their natural habitat; rats swim naturally (classically, the "sewer rat"), whereas mice evolved in the dry areas of central Asia. To overcome these problems, it was considered whether shallow water would be a sufficient stimulus to provide escape motivation for mice. This would also avoid the problems of drying the small creatures with a towel and then putting them in a heated recovery chamber to avoid hypothermia, which is a much more serious problem than with rats; the large ratio of surface area to volume of a mouse makes it particularly vulnerable to rapid heat loss. Another consideration was whether a more natural escape strategy could be used, to facilitate learning. Since animals that fall into water and swim away from the safety of the shore are unlikely to pass on their genes, animals have evolved a natural tendency to swim to the edge of a body of water. The Morris water maze, however, requires them to swim to a hidden platform towards the center of the maze - exactly opposite to their evolved behavior. Therefore the paddling maze should incorporate escape to the edge of the apparatus. This feature, coupled with the use of relatively non-aversive shallow water, embodies the "Refinement" aspect of the "3 Rs" of Russell and Burch8. Various types of maze design were tried; the common feature was that the water was always shallow (2 cm deep) and escape was via a tube piercing the transparent wall of the apparatus. Other tubes ("false exits") were also placed around the walls but these were blocked off. From the inside of the maze all false exits and the single true exit looked the same. Currently a dodecagonal (12-sided) maze is in use in Oxford, with 12 true/false exits set in the corners. In a recent development a transparent paddling Y-maze has been tested successfully.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, hippocampus, paddling pool, Alzheimer's, welfare, 3Rs, Morris water maze, paddling Y-maze, Barnes maze, animal model
Play Button
The Successive Alleys Test of Anxiety in Mice and Rats
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
The plus-maze was derived from the early work of Montgomery. He observed that rats tended to avoid the open arms of a maze, preferring the enclosed ones. Handley, Mithani and File et al. performed the first studies on the plus-maze design we use today, and in 1987 Lister published a design for use with mice. Time spent on, and entries into, the open arms are an index of anxiety; the lower these indices, the more anxious the mouse is. Alternatively, a mouse that spends most of its time in the closed arms is classed as anxious. One of the problems of the plus-maze is that, while time spent on, and entries into, the open arms is a fairly unambiguous measure of anxiety, time in the central area is more difficult to interpret, although time spent here has been classified as “decision making”. In many tests central area time is a considerable part of the total test time. Shepherd et al. produced an ingenious design to eliminate the central area, which they called the “zero maze”. However, although used by several groups, it has never been as widely adopted as the plus-maze. In the present article I describe a modification of the plus-maze design that not only eliminates the central area but also incorporates elements from other anxiety tests, such as the light-dark box and emergence tests. It is a linear series of four alleys, each having increasing anxiogenic properties. It has given similar results to the plus-maze in general. Although it may not be more sensitive than the plus-maze (more data is needed before a firm conclusion can be reached on this point), it provides a useful confirmation of plus-maze results which would be useful when, for example, only a single example of a mutant mouse was available, as, for example, in ENU-based mutagenesis programs.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, rats, anxiety-like behaviour, plus-maze, behaviour, prefrontal cortex, hippocampus, medial septum, successive alleys, animal model
Play Button
Vertical T-maze Choice Assay for Arthropod Response to Odorants
Authors: Lukasz Stelinski, Siddharth Tiwari.
Institutions: University of Florida .
Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable.
Biochemistry, Issue 72, Molecular Biology, Basic Protocols, Entomology, Behavior, Eukaryota, Organic Chemicals, Chemical Actions and Uses, Life Sciences (General), Behavioral Sciences, Arthropod behavior, chemical ecology, olfactometer, chemotaxis, olfaction, attraction, repulsion, odorant, T-maze, psyllid, Diaphorina citri, insect, anthropod, insect model
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)
Authors: Ying Wang, Nicholas Baker, Gro V. Amdam.
Institutions: Arizona State University , Norwegian University of Life Sciences.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.
Neuroscience, Issue 77, Genetics, Behavior, Neurobiology, Molecular Biology, Chemistry, Biochemistry, biology (general), genetics (animal and plant), animal biology, RNA interference, RNAi, double stranded RNA, dsRNA, double gene knockdown, vitellogenin gene, vg, ultraspiracle gene, usp, vitellogenin protein, Vg, ultraspiracle protein, USP, green fluorescence protein, GFP, gustatory perception, proboscis extension response, PER, honey bees, Apis mellifera, animal model, assay
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
Play Button
Simple and Computer-assisted Olfactory Testing for Mice
Authors: Emanuele Brai, Lavinia Alberi.
Institutions: University of Fribourg.
Olfaction is highly conserved among species and is required for reproduction and survival. In humans, olfaction is also one of the senses that is affected with aging and is a strong predictor of neurodegenerative diseases. Thus, olfaction testing is used as a non-invasive diagnostic method to detect neurological deficits early on. In order to understand the mechanisms underlying olfactory network susceptibility, olfactory research in rodents has gained momentum in the past decade. Here, we present a very simple, time efficient and reproducible olfactory testing method of innate odor perception and sensitivity in mice without the need of any prior food or water restriction. The tests are performed in a familiar environment to the mice, require only the scents and a 2 min session of odorant exposure. The analysis is performed, post-hoc, using computer-assisted commands on ImageJ and can be, therefore, carried out from start to end by one researcher. This protocol does not require any special hardware or setup and is indicated for any laboratory interested in testing olfactory perception and sensitivity.
Behavior, Issue 100, mice, olfactory perception, olfactory sensitivity, peanut butter, urine, 2-methylbutyric acid, computer-assisted video processing
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.