JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Expression of multiple sexual signals by fathers and sons in the East-Mediterranean barn swallow: are advertising strategies heritable?
.
PLoS ONE
PUBLISHED: 02-14-2015
The level of expression of sexually selected traits is generally determined by genes, environment and their interaction. In species that use multiple sexual signals which may be costly to produce, investing in the expression of one sexual signal may limit the expression of the other, favoring the evolution of a strategy for resource allocation among signals. As a result, even when the expression of sexual signals is condition dependent, the relative level of expression of each signal may be heritable. We tested this hypothesis in the East-Mediterranean barn swallow (Hirundo rustica transitiva), in which males have been shown to express two uncorrelated sexual signals: red-brown ventral coloration, and long tail streamers. We show that variation in both signals may partially be explained by age, as well as by paternal origin (genetic father-son regressions), but that the strongest similarity between fathers and sons is the relative allocation towards one trait or the other (relative expression index), rather than the expression of the traits themselves. These results suggest that the expression of one signal is not independent of the other, and that genetic strategies for resource allocation among sexual signals may be selected for during the evolution of multiple sexual signals.
Authors: Shu-Dan Yeh, Carolus Chan, José M. Ranz.
Published: 08-22-2013
ABSTRACT
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability 1. Sperm competition represents the competition between males after copulating with the same female 2, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals 3. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males 4. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males 2,5. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory 6,7. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions 7,8. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively) 9, which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
23 Related JoVE Articles!
Play Button
Gibberella zeae Ascospore Production and Collection for Microarray Experiments.
Authors: Matias Pasquali, Corby Kistler.
Institutions: USDA, University of Minnesota/ Agroinnova, University of Torino, University of Minnesota.
Fusarium graminearum Schwabe (teleomorph Gibberella zeae) is a plant pathogen causing scab disease on wheat and barley that reduces crop yield and grain quality. F. graminearum also causes stalk and ear rots of maize and is a producer of mycotoxins such as the trichothecenes that contaminate grain and are harmful to humans and livestock (Goswami and Kistler, 2004). The fungus produces two types of spores. Ascospores, the propagules resulting from sexual reproduction, are the main source of primary infection. These spores are forcibly discharged from mature perithecia and dispersed by wind (Francl et al 1999). Secondary infections are mainly caused by macroconidia which are produced by asexual means on the plant surface. To study the developmental processes of ascospores in this fungus, a procedure for their collection in large quantity under sterile conditions was required. Our protocol was filmed in order to generate the highest level of information for understanding and reproducibility; crucial aspects when full genome gene expression profiles are generated and interpreted. In particular, the variability of ascospore germination and biological activity are dependent on the prior manipulation of the material. The use of video for documenting every step in ascospore production is proposed in order to increase standardization, complying with the increasingly stringent requirements for microarray analysis. The procedure requires only standard laboratory equipment. Steps are shown to prevent contamination and favor time synchronization of ascospores.
Plant Biology, Issue 1, sexual cross, spore separation, MIAME standards
115
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Effect of Male Accessory Gland Products on Egg Laying in Gastropod Molluscs
Authors: Sander van Iersel, Elferra M. Swart, Yumi Nakadera, Nico M. van Straalen, Joris M. Koene.
Institutions: VU University.
In internally fertilizing animals, seminal fluid is usually added to the spermatozoa, together forming the semen or ejaculate. Besides nourishing and activating sperm, the components in the seminal fluid can also influence female physiology to augment fertilization success of the sperm donor. While many studies have reported such effects in species with separate sexes, few studies have addressed this in simultaneously hermaphroditic animals. This video protocol presents a method to study effects of seminal fluid in gastropods, using a simultaneously hermaphroditic freshwater snail, the great pond snail Lymnaea stagnalis, as model organism. While the procedure is shown using complete prostate gland extracts, individual components (i.e., proteins, peptides, and other compounds) of the seminal fluid can be tested in the same way. Effects of the receipt of ejaculate components on egg laying can be quantified in terms of frequency of egg laying and more subtle estimates of female reproductive performance such as egg numbers within each egg masses. Results show that seminal fluid proteins affect female reproductive output in this simultaneous hermaphrodite, highlighting their importance for sexual selection.
Physiology, Issue 88, Allohormone, Fresh-water snail, Gastropod, Lymnaea stagnalis, Mollusc, Pond snail, Prostate, Semen, Seminal fluid Sexual selection, Sperm
51698
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
51708
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models
Authors: Teresa E. Lever, Sabrina M. Braun, Ryan T. Brooks, Rebecca A. Harris, Loren L. Littrell, Ryan M. Neff, Cameron J. Hinkel, Mitchell J. Allen, Mollie A. Ulsas.
Institutions: University of Missouri, University of Missouri, University of Missouri.
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models.
Medicine, Issue 97, mouse, murine, rodent, swallowing, deglutition, dysphagia, videofluoroscopy, radiation, iohexol, barium, palatability, taste, translational, disease models
52319
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
52523
Play Button
Mosaic Zebrafish Transgenesis for Functional Genomic Analysis of Candidate Cooperative Genes in Tumor Pathogenesis
Authors: Choong Yong Ung, Feng Guo, Xiaoling Zhang, Zhihui Zhu, Shizhen Zhu.
Institutions: Mayo Clinic College of Medicine, Center for Individualized Medicine, Tufts University School of Medicine, Mayo Clinic.
Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic “drivers” among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has resisted most forms of contemporary treatment.
Developmental Biology, Issue 97, zebrafish, animal model, mosaic transgenesis, coinjection, functional genomics, tumor initiation
52567
Play Button
Enhanced Genetic Analysis of Single Human Bioparticles Recovered by Simplified Micromanipulation from Forensic ‘Touch DNA’ Evidence
Authors: Katherine Farash, Erin K. Hanson, Jack Ballantyne.
Institutions: University of Central Florida, University of Central Florida, University of Central Florida.
DNA profiles can be obtained from ‘touch DNA’ evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a ‘blind-swabbing’ approach will co-sample cellular material from the different individuals, even if the individuals’ cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim’s DNA may be found in significant excess thus masking any potential perpetrator’s DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, ‘smart analysis’ method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., “clumps”) bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material.
Basic Protocol, Issue 97, Forensic Science, Touch DNA Evidence, Micro-manipulation, Cell Isolation and Recovery, DNA Profiling, Short Tandem Repeat (STR) Analysis
52612
Play Button
Dyeing Insects for Behavioral Assays: the Mating Behavior of Anesthetized Drosophila
Authors: Rudi L. Verspoor, Chloe Heys, Thomas A. R. Price.
Institutions: University of Liverpool.
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.
Neuroscience, Issue 98, Anesthesia, courtship, fruit fly, individual marking, individual tagging, male-male competition, mate choice, mate competition, mating latency, wing clipping
52645
Play Button
Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
Authors: Thomas Z. Thompson, Farres Obeidin, Alisa A. Davidoff, Cody L. Hightower, Christohper Z. Johnson, Sonya L. Rice, Rebecca-Lyn Sokolove, Brandon K. Taylor, John M. Tuck, William G. Pearson, Jr..
Institutions: Georgia Regents University, New York University, Georgia Regents University, Georgia Regents University.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference. To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics. Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding). Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.
Medicine, Issue 87, videofluoroscopy, modified barium swallow studies, hyolaryngeal kinematics, deglutition, dysphagia, dysphagia research, hyolaryngeal complex
51476
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
51438
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
In situ Protocol for Butterfly Pupal Wings Using Riboprobes
Authors: Diane Ramos, Antonia Monteiro.
Institutions: SUNY-University at Buffalo, Yale University.
Here we present, in video format, a protocol for in situ hybridizations in pupal wings of the butterfly Bicyclus anynana using riboprobes. In situ hybridizations, a mainstay of developmental biology, are useful to study the spatial and temporal patterns of gene expression in developing tissues at the level of transcription. If antibodies that target the protein products of gene transcription have not yet been developed, and/or there are multiple gene copies of a particular protein in the genome that cannot be differentiated using available antibodies, in situs can be used instead. While an in situ technique for larval wing discs has been available to the butterfly community for several years, the current protocol has been optimized for the larger and more fragile pupal wings.
Developmental Biology, issue 4, hybridization, wing, staining
208
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Dissection of Oenocytes from Adult Drosophila melanogaster
Authors: Joshua J. Krupp, Joel D. Levine.
Institutions: University of Toronto.
In Drosophila melanogaster, as in other insects, a waxy layer on the outer surface of the cuticle, composed primarily of hydrocarbon compounds, provides protection against desiccation and other environmental challenges. Several of these cuticular hydrocarbon (CHC) compounds also function as semiochemical signals, and as such mediate pheromonal communications between members of the same species, or in some instances between different species, and influence behavior. Specialized cells referred to as oenocytes are regarded as the primary site for CHC synthesis. However, relatively little is known regarding the involvement of the oenocytes in the regulation of the biosynthetic, transport, and deposition pathways contributing to CHC output. Given the significant role that CHCs play in several aspects of insect biology, including chemical communication, desiccation resistance, and immunity, it is important to gain a greater understanding of the molecular and genetic regulation of CHC production within these specialized cells. The adult oenocytes of D. melanogaster are located within the abdominal integument, and are metamerically arrayed in ribbon-like clusters radiating along the inner cuticular surface of each abdominal segment. In this video article we demonstrate a dissection technique used for the preparation of oenocytes from adult D. melanogaster. Specifically, we provide a detailed step-by-step demonstration of (1) how to fillet prepare an adult Drosophila abdomen, (2) how to identify the oenocytes and discern them from other tissues, and (3) how to remove intact oenocyte clusters from the abdominal integument. A brief experimental illustration of how this preparation can be used to examine the expression of genes involved in hydrocarbon synthesis is included. The dissected preparation demonstrated herein will allow for the detailed molecular and genetic analysis of oenocyte function in the adult fruit fly.
Developmental Biology, Issue 41, Drosophila, oenocytes, metabolism, cuticular hydrocarbons, chemical senses, chemical communication, pheromones, adult
2242
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
2534
Play Button
Experimental Manipulation of Body Size to Estimate Morphological Scaling Relationships in Drosophila
Authors: R. Craig Stillwell, Ian Dworkin, Alexander W. Shingleton, W. Anthony Frankino.
Institutions: University of Houston, Michigan State University.
The scaling of body parts is a central feature of animal morphology1-7. Within species, morphological traits need to be correctly proportioned to the body for the organism to function; larger individuals typically have larger body parts and smaller individuals generally have smaller body parts, such that overall body shape is maintained across a range of adult body sizes. The requirement for correct proportions means that individuals within species usually exhibit low variation in relative trait size. In contrast, relative trait size can vary dramatically among species and is a primary mechanism by which morphological diversity is produced. Over a century of comparative work has established these intra- and interspecific patterns3,4. Perhaps the most widely used approach to describe this variation is to calculate the scaling relationship between the size of two morphological traits using the allometric equation y=bxα, where x and y are the size of the two traits, such as organ and body size8,9. This equation describes the within-group (e.g., species, population) scaling relationship between two traits as both vary in size. Log-transformation of this equation produces a simple linear equation, log(y) = log(b) + αlog(x) and log-log plots of the size of different traits among individuals of the same species typically reveal linear scaling with an intercept of log(b) and a slope of α, called the 'allometric coefficient'9,10. Morphological variation among groups is described by differences in scaling relationship intercepts or slopes for a given trait pair. Consequently, variation in the parameters of the allometric equation (b and α) elegantly describes the shape variation captured in the relationship between organ and body size within and among biological groups (see 11,12). Not all traits scale linearly with each other or with body size (e.g., 13,14) Hence, morphological scaling relationships are most informative when the data are taken from the full range of trait sizes. Here we describe how simple experimental manipulation of diet can be used to produce the full range of body size in insects. This permits an estimation of the full scaling relationship for any given pair of traits, allowing a complete description of how shape covaries with size and a robust comparison of scaling relationship parameters among biological groups. Although we focus on Drosophila, our methodology should be applicable to nearly any fully metamorphic insect.
Developmental Biology, Issue 56, Drosophila, allometry, morphology, body size, scaling, insect
3162
Play Button
Sexual Development and Ascospore Discharge in Fusarium graminearum
Authors: Brad Cavinder, Usha Sikhakolli, Kayla M. Fellows, Frances Trail.
Institutions: Michigan State University, Michigan State University, Michigan State University, Michigan State University.
Fusarium graminearum has become a model system for studies in development and pathogenicity of filamentous fungi. F. graminearum most easily produces fruiting bodies, called perithecia, on carrot agar. Perithecia contain numerous tissue types, produced at specific stages of perithecium development. These include (in order of appearance) formation of the perithecium initials (which give rise to the ascogenous hyphae), the outer wall, paraphyses (sterile mycelia which occupy the center of the perithecium until the asci develop), the asci, and the ascospores within the asci14. The development of each of these tissues is separated by approximately 24 hours and has been the basis of transcriptomic studies during sexual development12,8. Refer to Hallen et al. (2007) for a more thorough description of development, including photographs of each stage. Here, we present the methods for generating and harvesting synchronously developing lawns of perithecia for temporal studies of gene regulation, development, and physiological processes. Although these methods are written specifically to be used with F. graminearum, the techniques can be used for a variety of other fungi, provided that fruiting can be induced in culture and there is some synchrony to development. We have recently adapted this protocol to study the sexual development of F. verticillioides. Although individual perithecia must be hand picked in this species, because a lawn of developing perithecia could not be induced, the process worked well for studying development (Sikhakolli and Trail, unpublished). The most important function of fungal fruiting bodies is the dispersal of spores. In many of the species of Ascomycota (ascus producing fungi), spores are shot from the ascus, due to the generation of turgor pressure within the ascus, driving ejection of spores (and epiplasmic fluid) through the pore in the ascus tip2,7. Our studies of forcible ascospore discharge have resulted in development of a "spore discharge assay", which we use to screen for mutations in the process. Here we present the details of this assay. F. graminearum is homothallic, and thus can form fruiting bodies in the absence of a compatible partner. The advantage of homothallism is that crossing is not necessary to generate offspring homozygous for a particular trait, a facet that has facilitated the study of sexual development in this species14,7. However, heterothallic strains have been generated that can be used for crossing5,9. It is also possible to cross homothallic strains to obtain mutants for several genes in one strain1. This is done by coinoculating one Petri dish with 2 strains. Along the meeting point, the majority of perithecia will be recombinant (provided a mutation in one of the parent strains does not inhibit outcrossing). As perithecia age, they exude ascospores en masse instead of forcibly discharging them. The resulting spore exudate (called a cirrhus) sits at the tip of the perithecium and can easily be removed for recovery of individual spores. Here we present a protocol to facilitate the identification of recombinant perithecia and the recovery of recombinant progeny.
Plant Biology, Issue 61, Ascospores, perithecia, forcible discharge, mycotoxin, conidia, development
3895
Play Button
A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)
Authors: Jason S Goldstein, Tracy L Pugh, Elizabeth A Dubofsky, Kari L Lavalli, Michael Clancy, Winsor H Watson III.
Institutions: University of New Hampshire, Massachusetts Division of Marine Fisheries, Boston University, Middle College.
Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations.
Environmental Sciences, Issue 84, sperm limitation, spermatophore, lobster fishery, sex ratios, sperm receptacle, mating, American lobster, Homarus americanus
50498
Play Button
Using Eye Movements to Evaluate the Cognitive Processes Involved in Text Comprehension
Authors: Gary E. Raney, Spencer J. Campbell, Joanna C. Bovee.
Institutions: University of Illinois at Chicago.
The present article describes how to use eye tracking methodologies to study the cognitive processes involved in text comprehension. Measuring eye movements during reading is one of the most precise methods for measuring moment-by-moment (online) processing demands during text comprehension. Cognitive processing demands are reflected by several aspects of eye movement behavior, such as fixation duration, number of fixations, and number of regressions (returning to prior parts of a text). Important properties of eye tracking equipment that researchers need to consider are described, including how frequently the eye position is measured (sampling rate), accuracy of determining eye position, how much head movement is allowed, and ease of use. Also described are properties of stimuli that influence eye movements that need to be controlled in studies of text comprehension, such as the position, frequency, and length of target words. Procedural recommendations related to preparing the participant, setting up and calibrating the equipment, and running a study are given. Representative results are presented to illustrate how data can be evaluated. Although the methodology is described in terms of reading comprehension, much of the information presented can be applied to any study in which participants read verbal stimuli.
Behavior, Issue 83, Eye movements, Eye tracking, Text comprehension, Reading, Cognition
50780
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
51194
Play Button
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins
Authors: Savannah E. Sanchez, Daniel A. Cuevas, Jason E. Rostron, Tiffany Y. Liang, Cullen G. Pivaroff, Matthew R. Haynes, Jim Nulton, Ben Felts, Barbara A. Bailey, Peter Salamon, Robert A. Edwards, Alex B. Burgin, Anca M. Segall, Forest Rohwer.
Institutions: San Diego State University, San Diego State University, San Diego State University, San Diego State University, San Diego State University, Argonne National Laboratory, Broad Institute.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Immunology, Issue 100, phenomics, phage, viral metagenome, Multi-phenotype Assay Plates (MAPs), continuous culture, metabolomics
52854
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.