JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity.
PUBLISHED: 02-14-2015
A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.
Authors: Marcel Hollenstein, Christine Catherine Smith, Michael Räz.
Published: 04-03-2014
The traditional strategy for the introduction of chemical functionalities is the use of solid-phase synthesis by appending suitably modified phosphoramidite precursors to the nascent chain. However, the conditions used during the synthesis and the restriction to rather short sequences hamper the applicability of this methodology. On the other hand, modified nucleoside triphosphates are activated building blocks that have been employed for the mild introduction of numerous functional groups into nucleic acids, a strategy that paves the way for the use of modified nucleic acids in a wide-ranging palette of practical applications such as functional tagging and generation of ribozymes and DNAzymes. One of the major challenges resides in the intricacy of the methodology leading to the isolation and characterization of these nucleoside analogues. In this video article, we present a detailed protocol for the synthesis of these modified analogues using phosphorous(III)-based reagents. In addition, the procedure for their biochemical characterization is divulged, with a special emphasis on primer extension reactions and TdT tailing polymerization. This detailed protocol will be of use for the crafting of modified dNTPs and their further use in chemical biology.
22 Related JoVE Articles!
Play Button
RNA Extraction from Neuroprecursor Cells Using the Bio-Rad Total RNA Kit
Authors: Jia Sheng Su, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Basic Protocols, Issue 9, RNA, Purification, Brain
Play Button
Designing a Bio-responsive Robot from DNA Origami
Authors: Eldad Ben-Ishay, Almogit Abu-Horowitz, Ido Bachelet.
Institutions: Bar-Ilan University.
Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 . The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings.
Bioengineering, Issue 77, Genetics, Biomedical Engineering, Molecular Biology, Medicine, Genomics, Nanotechnology, Nanomedicine, DNA origami, nanorobot, caDNAno, DNA, DNA Origami, nucleic acids, DNA structures, CAD, sequencing
Play Button
Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray
Authors: Yvonne Linger, Alexander Kukhtin, Julia Golova, Alexander Perov, Peter Qu, Christopher Knickerbocker, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc..
Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.
Immunology, Issue 86, MDR-TB, gel element microarray, closed amplicon, drug resistance, rifampin, isoniazid, streptomycin, ethambutol
Play Button
Understanding Early Organogenesis Using a Simplified In Situ Hybridization Protocol in Xenopus
Authors: Steven J. Deimling, Rami R. Halabi, Stephanie A. Grover, Jean H. Wang, Thomas A. Drysdale.
Institutions: Hospital for Sick Children, University of Western Ontario, University of Western Ontario, Hospital for Sick Children, University of Western Ontario.
Organogenesis is the study of how organs are specified and then acquire their specific shape and functions during development. The Xenopuslaevis embryo is very useful for studying organogenesis because their large size makes them very suitable for identifying organs at the earliest steps in organogenesis. At this time, the primary method used for identifying a specific organ or primordium is whole mount in situ hybridization with labeled antisense RNA probes specific to a gene that is expressed in the organ of interest. In addition, it is relatively easy to manipulate genes or signaling pathways in Xenopus and in situ hybridization allows one to then assay for changes in the presence or morphology of a target organ. Whole mount in situ hybridization is a multi-day protocol with many steps involved. Here we provide a simplified protocol with reduced numbers of steps and reagents used that works well for routine assays. In situ hybridization robots have greatly facilitated the process and we detail how and when we utilize that technology in the process. Once an in situ hybridization is complete, capturing the best image of the result can be frustrating. We provide advice on how to optimize imaging of in situ hybridization results. Although the protocol describes assessing organogenesis in Xenopus laevis, the same basic protocol can almost certainly be adapted to Xenopus tropicalis and other model systems.
Developmental Biology, Issue 95, Xenopus, organogenesis, in situ hybridization, RNA methods, embryology, imaging, whole mount
Play Button
Real-time Imaging of Single Engineered RNA Transcripts in Living Cells Using Ratiometric Bimolecular Beacons
Authors: Yang Song, Xuemei Zhang, Lingyan Huang, Mark A. Behlke, Andrew Tsourkas.
Institutions: University of Pennsylvania, Integrated DNA Technologies, Inc..
The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3’-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts.
Genetics, Issue 90, RNA, imaging, single molecule, fluorescence, living cell
Play Button
RNA Catalyst as a Reporter for Screening Drugs against RNA Editing in Trypanosomes
Authors: Houtan Moshiri, Vaibhav Mehta, Reza Salavati.
Institutions: McGill University, McGill University, McGill University.
Substantial progress has been made in determining the mechanism of mitochondrial RNA editing in trypanosomes. Similarly, considerable progress has been made in identifying the components of the editosome complex that catalyze RNA editing. However, it is still not clear how those proteins work together. Chemical compounds obtained from a high-throughput screen against the editosome may block or affect one or more steps in the editing cycle. Therefore, the identification of new chemical compounds will generate valuable molecular probes for dissecting the editosome function and assembly. In previous studies, in vitro editing assays were carried out using radio-labeled RNA. These assays are time consuming, inefficient and unsuitable for high-throughput purposes. Here, a homogenous fluorescence-based “mix and measure” hammerhead ribozyme in vitro reporter assay to monitor RNA editing, is presented. Only as a consequence of RNA editing of the hammerhead ribozyme a fluorescence resonance energy transfer (FRET) oligoribonucleotide substrate undergoes cleavage. This in turn results in separation of the fluorophore from the quencher thereby producing a signal. In contrast, when the editosome function is inhibited, the fluorescence signal will be quenched. This is a highly sensitive and simple assay that should be generally applicable to monitor in vitro RNA editing or high throughput screening of chemicals that can inhibit the editosome function.
Genetics, Issue 89, RNA editing, Trypanosoma brucei, Editosome, Hammerhead ribozyme (HHR), High-throughput screening, Fluorescence resonance energy transfer (FRET)
Play Button
Enhanced Northern Blot Detection of Small RNA Species in Drosophila Melanogaster
Authors: Pietro Laneve, Angela Giangrande.
Institutions: Institut de Génétique et de Biologie Moléculaire et Cellulaire, Istituto Italiano di Tecnologia.
The last decades have witnessed the explosion of scientific interest around gene expression control mechanisms at the RNA level. This branch of molecular biology has been greatly fueled by the discovery of noncoding RNAs as major players in post-transcriptional regulation. Such a revolutionary perspective has been accompanied and triggered by the development of powerful technologies for profiling short RNAs expression, both at the high-throughput level (genome-wide identification) or as single-candidate analysis (steady state accumulation of specific species). Although several state-of-art strategies are currently available for dosing or visualizing such fleeing molecules, Northern Blot assay remains the eligible approach in molecular biology for immediate and accurate evaluation of RNA expression. It represents a first step toward the application of more sophisticated, costly technologies and, in many cases, remains a preferential method to easily gain insights into RNA biology. Here we overview an efficient protocol (Enhanced Northern Blot) for detecting weakly expressed microRNAs (or other small regulatory RNA species) from Drosophila melanogaster whole embryos, manually dissected larval/adult tissues or in vitro cultured cells. A very limited amount of RNA is required and the use of material from flow cytometry-isolated cells can be also envisaged.
Molecular Biology, Issue 90, Northern blotting, Noncoding RNAs, microRNAs, rasiRNA, Gene expression, Gcm/Glide, Drosophila melanogaster
Play Button
Quick Fluorescent In Situ Hybridization Protocol for Xist RNA Combined with Immunofluorescence of Histone Modification in X-chromosome Inactivation
Authors: Minghui Yue, John Lalith Charles Richard, Norishige Yamada, Akiyo Ogawa, Yuya Ogawa.
Institutions: Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine.
Combining RNA fluorescent in situ hybridization (FISH) with immunofluorescence (immuno-FISH) creates a technique that can be employed at the single cell level to detect the spatial dynamics of RNA localization with simultaneous insight into the localization of proteins, epigenetic modifications and other details which can be highlighted by immunofluorescence. X-chromosome inactivation is a paradigm for long non-coding RNA (lncRNA)-mediated gene silencing. X-inactive specific transcript (Xist) lncRNA accumulation (called an Xist cloud) on one of the two X-chromosomes in mammalian females is a critical step to initiate X-chromosome inactivation. Xist RNA directly or indirectly interacts with various chromatin-modifying enzymes and introduces distinct epigenetic landscapes to the inactive X-chromosome (Xi). One known epigenetic hallmark of the Xi is the Histone H3 trimethyl-lysine 27 (H3K27me3) modification. Here, we describe a simple and quick immuno-FISH protocol for detecting Xist RNA using RNA FISH with multiple oligonucleotide probes coupled with immunofluorescence of H3K27me3 to examine the localization of Xist RNA and associated epigenetic modifications. Using oligonucleotide probes results in a shorter incubation time and more sensitive detection of Xist RNA compared to in vitro transcribed RNA probes (riboprobes). This protocol provides a powerful tool for understanding the dynamics of lncRNAs and its associated epigenetic modification, chromatin structure, nuclear organization and transcriptional regulation.
Genetics, Issue 93, Xist, X-chromosome inactivation, FISH, histone methylation, epigenetics, long non-coding RNA
Play Button
Nucleocapsid Annealing-Mediated Electrophoresis (NAME) Assay Allows the Rapid Identification of HIV-1 Nucleocapsid Inhibitors
Authors: Alice Sosic, Marta Cappellini, Matteo Scalabrin, Barbara Gatto.
Institutions: University of Padova, SUNY Albany.
RNA or DNA folded in stable tridimensional folding are interesting targets in the development of antitumor or antiviral drugs. In the case of HIV-1, viral proteins involved in the regulation of the virus activity recognize several nucleic acids. The nucleocapsid protein NCp7 (NC) is a key protein regulating several processes during virus replication. NC is in fact a chaperone destabilizing the secondary structures of RNA and DNA and facilitating their annealing. The inactivation of NC is a new approach and an interesting target for anti-HIV therapy. The Nucleocapsid Annealing-Mediated Electrophoresis (NAME) assay was developed to identify molecules able to inhibit the melting and annealing of RNA and DNA folded in thermodynamically stable tridimensional conformations, such as hairpin structures of TAR and cTAR elements of HIV, by the nucleocapsid protein of HIV-1. The new assay employs either the recombinant or the synthetic protein, and oligonucleotides without the need of their previous labeling. The analysis of the results is achieved by standard polyacrylamide gel electrophoresis (PAGE) followed by conventional nucleic acid staining. The protocol reported in this work describes how to perform the NAME assay with the full-length protein or its truncated version lacking the basic N-terminal domain, both competent as nucleic acids chaperones, and how to assess the inhibition of NC chaperone activity by a threading intercalator. Moreover, NAME can be performed in two different modes, useful to obtain indications on the putative mechanism of action of the identified NC inhibitors.
Immunology, Issue 95, HIV-1, Nucleocapsid protein, NCp7, TAR-RNA, DNA, oligonucleotides, annealing, Gel electrophoresis, NAME
Play Button
Bacterial Detection & Identification Using Electrochemical Sensors
Authors: Colin Halford, Vincent Gau, Bernard M. Churchill, David A. Haake.
Institutions: Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles , GeneFluidics, Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles .
Electrochemical sensors are widely used for rapid and accurate measurement of blood glucose and can be adapted for detection of a wide variety of analytes. Electrochemical sensors operate by transducing a biological recognition event into a useful electrical signal. Signal transduction occurs by coupling the activity of a redox enzyme to an amperometric electrode. Sensor specificity is either an inherent characteristic of the enzyme, glucose oxidase in the case of a glucose sensor, or a product of linkage between the enzyme and an antibody or probe. Here, we describe an electrochemical sensor assay method to directly detect and identify bacteria. In every case, the probes described here are DNA oligonucleotides. This method is based on sandwich hybridization of capture and detector probes with target ribosomal RNA (rRNA). The capture probe is anchored to the sensor surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its surface, the substrate is oxidized by HRP and reduced by the working electrode. This redox cycle results in shuttling of electrons by the substrate from the electrode to HRP, producing current flow in the electrode.
Bioengineering, Issue 74, Microbiology, Genetics, Molecular Biology, Cellular Biology, Biochemistry, Biomedical Engineering, Medicine, Immunology, Bacteria, Electrochemical sensor, ribosomal RNA, rRNA, 16S RNA, DNA, probe, assay
Play Button
Substrate Generation for Endonucleases of CRISPR/Cas Systems
Authors: Judith Zoephel, Srivatsa Dwarakanath, Hagen Richter, André Plagens, Lennart Randau.
Institutions: Max-Planck-Institute for Terrestrial Microbiology.
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
Molecular biology, Issue 67, CRISPR/Cas, endonuclease, in vitro transcription, crRNA, Cas6
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
A Rapid High-throughput Method for Mapping Ribonucleoproteins (RNPs) on Human pre-mRNA
Authors: Katherine H. Watkins, Allan Stewart, William G. Fairbrother.
Institutions: Brown University, Brown University.
Sequencing RNAs that co-immunoprecipitate (co-IP) with RNA binding proteins has increased our understanding of splicing by demonstrating that binding location often influences function of a splicing factor. However, as with any sampling strategy the chance of identifying an RNA bound to a splicing factor is proportional to its cellular abundance. We have developed a novel in vitro approach for surveying binding specificity on otherwise transient pre-mRNA. This approach utilizes a specifically designed oligonucleotide pool that tiles across introns, exons, splice junctions, or other pre-mRNA. The pool is subjected to some kind of molecular selection. Here, we demonstrate the method by separating the oligonucleotide into a bound and unbound fraction and utilize a two color array strategy to record the enrichment of each oligonucleotide in the bound fraction. The array data generates high-resolution maps with the ability to identify sequence-specific and structural determinates of ribonucleoprotein (RNP) binding on pre-mRNA. A unique advantage to this method is its ability to avoid the sampling bias towards mRNA associated with current IP and SELEX techniques, as the pool is specifically designed and synthesized from pre-mRNA sequence. The flexibility of the oligonucleotide pool is another advantage since the experimenter chooses which regions to study and tile across, tailoring the pool to their individual needs. Using this technique, one can assay the effects of polymorphisms or mutations on binding on a large scale or clone the library into a functional splicing reporter and identify oligonucleotides that are enriched in the included fraction. This novel in vitro high-resolution mapping scheme provides a unique way to study RNP interactions with transient pre-mRNA species, whose low abundance makes them difficult to study with current in vivo techniques.
Cellular Biology, Issue 34, pre-mRNA, splicing factors, tiling array, ribonucleoprotein (RNP), binding maps
Play Button
Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease
Authors: Farid Rahimi, Gal Bitan.
Institutions: David Geffen School of Medicine, University of California, Los Angeles, University of California, Los Angeles.
Alzheimer's disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult1. Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies2,3. Amyloid β-protein (Aβ) is central to AD pathogenesis. Soluble, oligomeric Aβ assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD4,5. Various forms of soluble Aβ assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood6. Specific molecular recognition tools may unravel the relationships amongst Aβ assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies7,8. Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)9,10. SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes). Despite emergence of aptamers as tools in modern biotechnology and medicine11, they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)12-16. An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-β17, a soluble, oligomeric, β-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils18. Aptamers generated using monomeric and several forms of fibrillar β2-microglobulin (β2m) were found to bind fibrils of certain other amyloidogenic proteins besides β2m fibrils19. Ylera et al. described RNA aptamers selected against immobilized monomeric Aβ4020. Unexpectedly, these aptamers bound fibrillar Aβ40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Aβ4021 generated using photo-induced cross-linking of unmodified proteins (PICUP)22,23. Similar to previous findings17,19,20, these aptamers reacted with fibrils of Aβ and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope21. Here, we present the SELEX methodology used in production of these aptamers21.
Neuroscience, Issue 39, Cellular Biology, Aptamer, RNA, amyloid β-protein, oligomer, amyloid fibrils, protein assembly
Play Button
Genome-wide Analysis of Aminoacylation (Charging) Levels of tRNA Using Microarrays
Authors: John Zaborske, Tao Pan.
Institutions: University of Chicago.
tRNA aminoacylation, or charging, levels can rapidly change within a cell in response to the environment[1]. Changes in tRNA charging levels in both prokaryotic and eukaryotic cells lead to translational regulation which is a major cellular mechanism of stress response. Familiar examples are the stringent response in E. coli and the Gcn2 stress response pathway in yeast ([2-6]). Recent work in E. coli and S. cerevisiae have shown that tRNA charging patterns are highly dynamic and depends on the type of stress experienced by cells [1, 6, 7]. The highly dynamic, variable nature of tRNA charging makes it essential to determine changes in tRNA charging levels at the genomic scale, in order to fully elucidate cellular response to environmental variations. In this review we present a method for simultaneously measuring the relative charging levels of all tRNAs in S. cerevisiae . While the protocol presented here is for yeast, this protocol has been successfully applied for determining relative charging levels in a wide variety of organisms including E. coli and human cell cultures[7, 8].
Cellular Biology, Issue 40, tRNA, aminoacylation, charging, microarray, S. cerevisiae
Play Button
Primer-Free Aptamer Selection Using A Random DNA Library
Authors: Weihua Pan, Ping Xin, Susan Patrick, Stacey Dean, Christine Keating, Gary Clawson.
Institutions: Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, Pennsylvania State University.
Aptamers are highly structured oligonucleotides (DNA or RNA) that can bind to targets with affinities comparable to antibodies 1. They are identified through an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX) to recognize a wide variety of targets, from small molecules to proteins and other macromolecules 2-4. Aptamers have properties that are well suited for in vivo diagnostic and/or therapeutic applications: Besides good specificity and affinity, they are easily synthesized, survive more rigorous processing conditions, they are poorly immunogenic, and their relatively small size can result in facile penetration of tissues. Aptamers that are identified through the standard SELEX process usually comprise ~80 nucleotides (nt), since they are typically selected from nucleic acid libraries with ~40 nt long randomized regions plus fixed primer sites of ~20 nt on each side. The fixed primer sequences thus can comprise nearly ~50% of the library sequences, and therefore may positively or negatively compromise identification of aptamers in the selection process 3, although bioinformatics approaches suggest that the fixed sequences do not contribute significantly to aptamer structure after selection 5. To address these potential problems, primer sequences have been blocked by complementary oligonucleotides or switched to different sequences midway during the rounds of SELEX 6, or they have been trimmed to 6-9 nt 7, 8. Wen and Gray 9 designed a primer-free genomic SELEX method, in which the primer sequences were completely removed from the library before selection and were then regenerated to allow amplification of the selected genomic fragments. However, to employ the technique, a unique genomic library has to be constructed, which possesses limited diversity, and regeneration after rounds of selection relies on a linear reamplification step. Alternatively, efforts to circumvent problems caused by fixed primer sequences using high efficiency partitioning are met with problems regarding PCR amplification 10. We have developed a primer-free (PF) selection method that significantly simplifies SELEX procedures and effectively eliminates primer-interference problems 11, 12. The protocols work in a straightforward manner. The central random region of the library is purified without extraneous flanking sequences and is bound to a suitable target (for example to a purified protein or complex mixtures such as cell lines). Then the bound sequences are obtained, reunited with flanking sequences, and re-amplified to generate selected sub-libraries. As an example, here we selected aptamers to S100B, a protein marker for melanoma. Binding assays showed Kd s in the 10-7 - 10-8 M range after a few rounds of selection, and we demonstrate that the aptamers function effectively in a sandwich binding format.
Cellular Biology, Issue 41, aptamer, selection, S100B, sandwich
Play Button
Generation of RNA/DNA Hybrids in Genomic DNA by Transformation using RNA-containing Oligonucleotides
Authors: Ying Shen, Francesca Storici.
Institutions: Georgia Institute of Technology.
Synthetic short nucleic acid polymers, oligonucleotides (oligos), are the most functional and widespread tools of molecular biology. Oligos can be produced to contain any desired DNA or RNA sequence and can be prepared to include a wide variety of base and sugar modifications. Moreover, oligos can be designed to mimic specific nucleic acid alterations and thus, can serve as important tools to investigate effects of DNA damage and mechanisms of repair. We found that Thermo Scientific Dharmacon RNA-containing oligos with a length between 50 and 80 nucleotides can be particularly suitable to study, in vivo, functions and consequences of chromosomal RNA/DNA hybrids and of ribonucleotides embedded into DNA. RNA/DNA hybrids can readily form during DNA replication, repair and transcription, however, very little is known about the stability of RNA/DNA hybrids in cells and to which extent these hybrids can affect the genetic integrity of cells. RNA-containing oligos, therefore, represent a perfect vector to introduce ribonucleotides into chromosomal DNA and generate RNA/DNA hybrids of chosen length and base composition. Here we present the protocol for the incorporation of ribonucleotides into the genome of the eukaryotic model system yeast /Saccharomyces cerevisiae/. Yet, our lab has utilized Thermo Scientific Dharmacon RNA-containing oligos to generate RNA/DNA hybrids at the chromosomal level in different cell systems, from bacteria to human cells.
Cellular Biology, Issue 45, RNA-containing oligonucleotides, ribonucleotides, RNA/DNA hybrids, yeast, transformation, gene targeting, genome instability, DNA repair
Play Button
In vitro tRNA Methylation Assay with the Entamoeba histolytica DNA and tRNA Methyltransferase Dnmt2 (Ehmeth) Enzyme
Authors: Ayala Tovy, Benjamin Hofmann, Mark Helm, Serge Ankri.
Institutions: Technion - Israel Institute of Technology, Johannes Gutenberg University.
Protozoan parasites are among the most devastating infectious agents of humans responsible for a variety of diseases including amebiasis, which is one of the three most common causes of death from parasitic disease. The agent of amebiasis is the amoeba parasite Entamoeba histolytica that exists under two stages: the infective cyst found in food or water and the invasive trophozoite living in the intestine. The clinical manifestations of amebiasis range from being asymptomatic to colitis, dysentery or liver abscesses. E. histolytica is one of the rare unicellular parasite with 5-methylcytosine (5mC) in its genome. 1, 2 It contains a single DNA methyltransferase, Ehmeth, that belongs to the Dnmt2 family. 2 A role for Dnmt2 in the control of repetitive elements has been established in E. histolytica, 3 Dictyostelium discoideum 4,5 and Drosophila. 6 Our recent work has shown that Ehmeth methylates tRNAAsp, and this finding indicates that this enzyme has a dual DNA/tRNAAsp methyltransferase activity. 7 This observation is in agreement with the dual activity that has been reported for D. discoideum and D. melanogaster. 8 The functional significance of the DNA/tRNA specificity of Dnmt2 enzymes is still unknown. To address this question, a method to determine the tRNA methyltransferase activity of Dnmt2 proteins was established. In this video, we describe a straightforward approach to prepare an adequate tRNA substrate for Dnmt2 and a method to measure its tRNA methyltransferase activity.
Immunology, Issue 44, tRNA, methylation, DNA methyltransferase 2, Entamoeba histolytica
Play Button
Performing Custom MicroRNA Microarray Experiments
Authors: Xiaoxiao Zhang, Yan Zeng.
Institutions: University of Minnesota , University of Minnesota .
microRNAs (miRNAs) are a large family of ˜ 22 nucleotides (nt) long RNA molecules that are widely expressed in eukaryotes 1. Complex genomes encode at least hundreds of miRNAs, which primarily inhibit the expression of a vast number of target genes post-transcriptionally 2, 3. miRNAs control a broad range of biological processes 1. In addition, altered miRNA expression has been associated with human diseases such as cancers, and miRNAs may serve as biomarkers for diseases and prognosis 4, 5. It is important, therefore, to understand the expression and functions of miRNAs under many different conditions. Three major approaches have been employed to profile miRNA expression: real-time PCR, microarray, and deep sequencing. The technique of miRNA microarray has the advantage of being high-throughput, generally less expensive, and most of the experimental and analysis steps can be carried out in a molecular biology laboratory at most universities, medical schools and associated hospitals. Here, we describe a method for performing custom miRNA microarray experiments. A miRNA probe set will be printed on glass slides to produce miRNA microarrays. RNA is isolated using a method or reagent that preserves small RNA species, and then labeled with a fluorescence dye. As a control, reference DNA oligonucleotides corresponding to a subset of miRNAs are also labeled with a different fluorescence dye. The reference DNA will serve to demonstrate the quality of the slide and hybridization and will also be used for data normalization. The RNA and DNA are mixed and hybridized to a microarray slide containing probes for most of the miRNAs in the database. After washing, the slide is scanned to obtain images, and intensities of the individual spots quantified. These raw signals will be further processed and analyzed as the expression data of the corresponding miRNAs. Microarray slides can be stripped and regenerated to reduce the cost of microarrays and to enhance the consistency of microarray experiments. The same principles and procedures are applicable to other types of custom microarray experiments.
Molecular Biology, Issue 56, Genetics, microRNA, custom microarray, oligonucleotide probes, RNA labeling
Play Button
Detection of Bacteria Using Fluorogenic DNAzymes
Authors: Sergio D. Aguirre, M. Monsur Ali, Pushpinder Kanda, Yingfu Li.
Institutions: McMaster University , McMaster University .
Outbreaks linked to food-borne and hospital-acquired pathogens account for millions of deaths and hospitalizations as well as colossal economic losses each and every year. Prevention of such outbreaks and minimization of the impact of an ongoing epidemic place an ever-increasing demand for analytical methods that can accurately identify culprit pathogens at the earliest stage. Although there is a large array of effective methods for pathogen detection, none of them can satisfy all the following five premier requirements embodied for an ideal detection method: high specificity (detecting only the bacterium of interest), high sensitivity (capable of detecting as low as a single live bacterial cell), short time-to-results (minutes to hours), great operational simplicity (no need for lengthy sampling procedures and the use of specialized equipment), and cost effectiveness. For example, classical microbiological methods are highly specific but require a long time (days to weeks) to acquire a definitive result.1 PCR- and antibody-based techniques offer shorter waiting times (hours to days), but they require the use of expensive reagents and/or sophisticated equipment.2-4 Consequently, there is still a great demand for scientific research towards developing innovative bacterial detection methods that offer improved characteristics in one or more of the aforementioned requirements. Our laboratory is interested in examining the potential of DNAzymes as a novel class of molecular probes for biosensing applications including bacterial detection.5 DNAzymes (also known as deoxyribozymes or DNA enzymes) are man-made single-stranded DNA molecules with the capability of catalyzing chemical reactions.6-8 These molecules can be isolated from a vast random-sequence DNA pool (which contains as many as 1016 individual sequences) by a process known as "in vitro selection" or "SELEX" (systematic evolution of ligands by exponential enrichment).9-16 These special DNA molecules have been widely examined in recent years as molecular tools for biosensing applications.6-8 Our laboratory has established in vitro selection procedures for isolating RNA-cleaving fluorescent DNAzymes (RFDs; Fig. 1) and investigated the use of RFDs as analytical tools.17-29 RFDs catalyze the cleavage of a DNA-RNA chimeric substrate at a single ribonucleotide junction (R) that is flanked by a fluorophore (F) and a quencher (Q). The close proximity of F and Q renders the uncleaved substrate minimal fluorescence. However, the cleavage event leads to the separation of F and Q, which is accompanied by significant increase of fluorescence intensity. More recently, we developed a method of isolating RFDs for bacterial detection.5 These special RFDs were isolated to "light up" in the presence of the crude extracellular mixture (CEM) left behind by a specific type of bacteria in their environment or in the media they are cultured (Fig. 1). The use of crude mixture circumvents the tedious process of purifying and identifying a suitable target from the microbe of interest for biosensor development (which could take months or years to complete). The use of extracellular targets means the assaying procedure is simple because there is no need for steps to obtain intracellular targets. Using the above approach, we derived an RFD that cleaves its substrate (FS1; Fig. 2A) only in the presence of the CEM produced by E. coli (CEM-EC).5 This E. coli-sensing RFD, named RFD-EC1 (Fig. 2A), was found to be strictly responsive to CEM-EC but nonresponsive to CEMs from a host of other bacteria (Fig. 3). Here we present the key experimental procedures for setting up E. coli detection assays using RFD-EC1 and representative results.
Biochemistry, Issue 63, Immunology, Fluorogenic DNAzymes, E. coli, biosensor, bacterial detection
Play Button
A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay
Authors: Jennifer A. Martin, Joshua E. Smith, Mercedes Warren, Jorge L. Chávez, Joshua A. Hagen, Nancy Kelley-Loughnane.
Institutions: Wright-Patterson Air Force Base, The Henry M. Jackson Foundation, UES, Inc..
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.
Molecular Biology, Issue 96, Aptamer, structure-switching, SELEX, small molecule, cortisol, next generation sequencing, gold nanoparticle, assay
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.