JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Human vagus nerve branching in the cervical region.
PUBLISHED: 02-14-2015
Vagus nerve stimulation is increasingly applied to treat epilepsy, psychiatric conditions and potentially chronic heart failure. After implanting vagus nerve electrodes to the cervical vagus nerve, side effects such as voice alterations and dyspnea or missing therapeutic effects are observed at different frequencies. Cervical vagus nerve branching might partly be responsible for these effects. However, vagus nerve branching has not yet been described in the context of vagus nerve stimulation.
Authors: Nicolas Guerout, Alexandre Paviot, Nicolas Bon-Mardion, Axel Honoré, Rais OBongo, Célia Duclos, Jean-Paul Marie.
Published: 02-23-2014
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.
22 Related JoVE Articles!
Play Button
A Method of Nodose Ganglia Injection in Sprague-Dawley Rat
Authors: Michael W. Calik, Miodrag Radulovacki, David W. Carley.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.
Neuroscience, Issue 93, neuroscience, nodose ganglia, vagus nerve, EMG, serotonin, apnea, genioglossus, cannabinoids
Play Button
Loading Drosophila Nerve Terminals with Calcium Indicators
Authors: Adam J. Rossano, Gregory T. Macleod.
Institutions: University of Texas Health Science Center at San Antonio (UTHSCSA).
Calcium plays many roles in the nervous system but none more impressive than as the trigger for neurotransmitter release, and none more profound than as the messenger essential for the synaptic plasticity that supports learning and memory. To further elucidate the molecular underpinnings of Ca2+-dependent synaptic mechanisms, a model system is required that is both genetically malleable and physiologically accessible. Drosophila melanogaster provides such a model. In this system, genetically-encoded fluorescent indicators are available to detect Ca2+ changes in nerve terminals. However, these indicators have limited sensitivity to Ca2+ and often show a non-linear response. Synthetic fluorescent indicators are better suited for measuring the rapid Ca2+ changes associated with nerve activity. Here we demonstrate a technique for loading dextran-conjugated synthetic Ca2+ indicators into live nerve terminals in Drosophila larvae. Particular emphasis is placed on those aspects of the protocol most critical to the technique's success, such as how to avoid static electricity discharges along the isolated nerves, maintaining the health of the preparation during extended loading periods, and ensuring axon survival by providing Ca2+ to promote sealing of severed axon endings. Low affinity dextran-conjugated Ca2+-indicators, such as fluo-4 and rhod, are available which show a high signal-to-noise ratio while minimally disrupting presynaptic Ca2+ dynamics. Dextran-conjugation helps prevent Ca2+ indicators being sequestered into organelles such as mitochondria. The loading technique can be applied equally to larvae, embryos and adults.
Neuroscience, Issue 6, Drosophila, neuron, imaging
Play Button
Simulating Pancreatic Neuroplasticity: In Vitro Dual-neuron Plasticity Assay
Authors: Ihsan Ekin Demir, Elke Tieftrunk, Karl-Herbert Schäfer, Helmut Friess, Güralp O. Ceyhan.
Institutions: Technische Universität München, University of Applied Sciences Kaiserslautern/Zweibrücken.
Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.
Medicine, Issue 86, Autonomic Nervous System Diseases, Digestive System Neoplasms, Gastrointestinal Diseases, Pancreatic Diseases, Pancreatic Neoplasms, Pancreatitis, Pancreatic neuroplasticity, dorsal root ganglia, myenteric plexus, Morphometry, neurite density, neurite branching, perikaryonal hypertrophy, neuronal plasticity
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
Play Button
In Vivo Electrophysiological Measurements on Mouse Sciatic Nerves
Authors: Alexander Schulz, Christian Walther, Helen Morrison, Reinhard Bauer.
Institutions: Fritz Lipmann Institute, Friedrich Schiller University Jena, Friedrich Schiller University Jena.
Electrophysiological studies allow a rational classification of various neuromuscular diseases and are of help, together with neuropathological techniques, in the understanding of the underlying pathophysiology1. Here we describe a method to perform electrophysiological studies on mouse sciatic nerves in vivo. The animals are anesthetized with isoflurane in order to ensure analgesia for the tested mice and undisturbed working environment during the measurements that take about 30 min/animal. A constant body temperature of 37 °C is maintained by a heating plate and continuously measured by a rectal thermo probe2. Additionally, an electrocardiogram (ECG) is routinely recorded during the measurements in order to continuously monitor the physiological state of the investigated animals. Electrophysiological recordings are performed on the sciatic nerve, the largest nerve of the peripheral nervous system (PNS), supplying the mouse hind limb with both motoric and sensory fiber tracts. In our protocol, sciatic nerves remain in situ and therefore do not have to be extracted or exposed, allowing measurements without any adverse nerve irritations along with actual recordings. Using appropriate needle electrodes3 we perform both proximal and distal nerve stimulations, registering the transmitted potentials with sensing electrodes at gastrocnemius muscles. After data processing, reliable and highly consistent values for the nerve conduction velocity (NCV) and the compound motor action potential (CMAP), the key parameters for quantification of gross peripheral nerve functioning, can be achieved.
Neuroscience, Issue 86, Demyelinating Diseases, Neurodegenerative Diseases, electrophysiology, sciatic nerve, mouse, nerve conduction velocity, neuromuscular diseases
Play Button
The Swimmeret System of Crayfish: A Practical Guide for the Dissection of the Nerve Cord and Extracellular Recordings of the Motor Pattern
Authors: Henriette A. Seichter, Felix Blumenthal, Carmen R. Smarandache-Wellmann.
Institutions: University of Cologne.
Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity 1-3. The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations 4. One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo 1. The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students’ practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish’s abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system. Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level.
Neurobiology, Issue 93, crustacean, dissection, extracellular recording, fictive locomotion, motor neurons, locomotion
Play Button
Analysis of Gene Expression Changes in the Rat Hippocampus After Deep Brain Stimulation of the Anterior Thalamic Nucleus
Authors: Tharakeswari Selvakumar, Kambiz N. Alavian, Travis Tierney.
Institutions: Brigham & Women's Hospital, Harvard Medical School, Imperial College London.
Deep brain stimulation (DBS) surgery, targeting various regions of the brain such as the basal ganglia, thalamus, and subthalamic regions, is an effective treatment for several movement disorders that have failed to respond to medication. Recent progress in the field of DBS surgery has begun to extend the application of this surgical technique to other conditions as diverse as morbid obesity, depression and obsessive compulsive disorder. Despite these expanding indications, little is known about the underlying physiological mechanisms that facilitate the beneficial effects of DBS surgery. One approach to this question is to perform gene expression analysis in neurons that receive the electrical stimulation. Previous studies have shown that neurogenesis in the rat dentate gyrus is elicited in DBS targeting of the anterior nucleus of the thalamus1. DBS surgery targeting the ATN is used widely for treatment refractory epilepsy. It is thus of much interest for us to explore the transcriptional changes induced by electrically stimulating the ATN. In this manuscript, we describe our methodologies for stereotactically-guided DBS surgery targeting the ATN in adult male Wistar rats. We also discuss the subsequent steps for tissue dissection, RNA isolation, cDNA preparation and quantitative RT-PCR for measuring gene expression changes. This method could be applied and modified for stimulating the basal ganglia and other regions of the brain commonly clinically targeted. The gene expression study described here assumes a candidate target gene approach for discovering molecular players that could be directing the mechanism for DBS.
Neuroscience, Issue 97, anterior thalamic nucleus, deep brain stimulation, dentate gyrus, hippocampus, epilepsy, gene expression, high-frequency stimulation, quantitative RT-PCR
Play Button
Dorsal Root Ganglia Neurons and Differentiated Adipose-derived Stem Cells: An In Vitro Co-culture Model to Study Peripheral Nerve Regeneration
Authors: Alba C. de Luca, Alessandro Faroni, Adam J. Reid.
Institutions: EPFL | STI | IMT/IBI | LSBI, The University of Manchester, University Hospital of South Manchester.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.
Neuroscience, Issue 96, Co-culture, neurons, stem cells, neurite outgrowth, peripheral nerve repair, cell-cell interaction
Play Button
A Time Differential Staining Technique Coupled with Full Bilateral Gill Denervation to Study Ionocytes in Fish
Authors: Velislava Tzaneva, Steve F. Perry.
Institutions: University of Ottawa.
Branchial ionocytes (ICs) are the functional units for ionic regulation in fish. In adults, they are found on the filamental and lamellar epithelia of the gill where they transport ions such as Na+, Cl- and Ca2+ via a variety of ion channels, pumps and exchangers. The teleost gill is extrinsically innervated by the facial (VI), glossopharyngeal (IX) and vagus (X) nerves. The IX and X nerves are also the extrinsic source of branchial IC innervation. Here, two techniques used to study the innervation, proliferation and distribution of ICs are described: a time differential staining technique and a full bilateral gill denervation technique. Briefly, goldfish are exposed to a vital mitochondrion-specific dye (e.g., MitoTracker Red) which labels (red fluorescence) pre-existing ICs. Fish were either allowed to recover for 3 - 5 days or immediately underwent a full bilateral gill denervation. After 3 - 5 days of recovery, the gills are harvested and fixed for immunohistochemistry. The tissue is then stained with an α-5 primary antibody (targets Na+/K+ ATPase containing cells) in conjunction with a secondary antibody that labels all (both new and pre-existing) ICs green. Using confocal imaging, it was demonstrated that pre-existing ICs appear yellow (labelled with both a viable mitochondrion-specific dye and α-5) and new ICs appear green (labelled with α-5 only). Both techniques used in tandem can be applied to study the innervation, proliferation and distribution of ICs on the gill filament when fish are exposed to environmental challenges.
Developmental Biology, Issue 97, gill, ionocyte, innervation, immunohistochemistry, cell proliferation, fish
Play Button
Setting Limits on Supersymmetry Using Simplified Models
Authors: Christian Gütschow, Zachary Marshall.
Institutions: University College London, CERN, Lawrence Berkeley National Laboratories.
Experimental limits on supersymmetry and similar theories are difficult to set because of the enormous available parameter space and difficult to generalize because of the complexity of single points. Therefore, more phenomenological, simplified models are becoming popular for setting experimental limits, as they have clearer physical interpretations. The use of these simplified model limits to set a real limit on a concrete theory has not, however, been demonstrated. This paper recasts simplified model limits into limits on a specific and complete supersymmetry model, minimal supergravity. Limits obtained under various physical assumptions are comparable to those produced by directed searches. A prescription is provided for calculating conservative and aggressive limits on additional theories. Using acceptance and efficiency tables along with the expected and observed numbers of events in various signal regions, LHC experimental results can be recast in this manner into almost any theoretical framework, including nonsupersymmetric theories with supersymmetry-like signatures.
Physics, Issue 81, high energy physics, particle physics, Supersymmetry, LHC, ATLAS, CMS, New Physics Limits, Simplified Models
Play Button
Three-dimensional Imaging of Nociceptive Intraepidermal Nerve Fibers in Human Skin Biopsies
Authors: Jacqueline R. Dauch, Chelsea N. Lindblad, John M. Hayes, Stephen I. Lentz, Hsinlin T. Cheng.
Institutions: University of Michigan , University of Michigan .
A punch biopsy of the skin is commonly used to quantify intraepidermal nerve fiber densities (IENFD) for the diagnosis of peripheral polyneuropathy 1,2. At present, it is common practice to collect 3 mm skin biopsies from the distal leg (DL) and the proximal thigh (PT) for the evaluation of length-dependent polyneuropathies 3. However, due to the multidirectional nature of IENFs, it is challenging to examine overlapping nerve structures through the analysis of two-dimensional (2D) imaging. Alternatively, three-dimensional (3D) imaging could provide a better solution for this dilemma. In the current report, we present methods for applying 3D imaging to study painful neuropathy (PN). In order to identify IENFs, skin samples are processed for immunofluorescent analysis of protein gene product 9.5 (PGP), a pan neuronal marker. At present, it is standard practice to diagnose small fiber neuropathies using IENFD determined by PGP immunohistochemistry using brightfield microscopy 4. In the current study, we applied double immunofluorescent analysis to identify total IENFD, using PGP, and nociceptive IENF, through the use of antibodies that recognize tropomyosin-receptor-kinase A (Trk A), the high affinity receptor for nerve growth factor 5. The advantages of co-staining IENF with PGP and Trk A antibodies benefits the study of PN by clearly staining PGP-positive, nociceptive fibers. These fluorescent signals can be quantified to determine nociceptive IENFD and morphological changes of IENF associated with PN. The fluorescent images are acquired by confocal microscopy and processed for 3D analysis. 3D-imaging provides rotational abilities to further analyze morphological changes associated with PN. Taken together, fluorescent co-staining, confocal imaging, and 3D analysis clearly benefit the study of PN.
Medicine, Issue 74, Neurobiology, Neuroscience, Anatomy, Physiology, Cellular Biology, Neurology, Pathology, Peripheral Nervous System Diseases, PNS, Polyneuropathies, Nervous System Diseases, intraepidermal nerve fibers, human skin biopsy, three-dimensional imaging, painful neuropathy, intraepidermal nerve fiber densities, IENFD, nerves, immunohistochemistry, confocal microscopy, imaging
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
Electrode Fabrication and Implantation in Aplysia californica for Multi-channel Neural and Muscular Recordings in Intact, Freely Behaving Animals
Authors: Miranda J. Cullins, Hillel J. Chiel.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Recording from key nerves and muscles of Aplysia during feeding behavior allows us to study the patterns of neural control in an intact animal. Simultaneously recording from multiple nerves and muscles gives us precise information about the timing of neural activity. Previous recording methods have worked for two electrodes, but the study of additional nerves or muscles required combining and averaging the recordings of multiple animals, which made it difficult to determine fine details of timing and phasing, because of variability from response to response, and from animal to animal. Implanting four individual electrodes has a very low success rate due to the formation of adhesions that prevent animals from performing normal feeding movements. We developed a new method of electrode fabrication that reduces the bulk of the electrodes inside the animal allowing for normal feeding movements. Using a combination of glues to attach the electrodes results in a more reliable insulation of the electrode which lasts longer, making it possible to record for periods as long as a week. The fabrication technique that we describe could be extended to incorporate several additional electrodes, and would be applicable to vertebrate animals.
Neuroscience, Issue 40, in vivo electrodes, Aplysia, neurobiology, chronic recording, extracellular recording
Play Button
Axoplasm Isolation from Rat Sciatic Nerve
Authors: Ida Rishal, Meir Rozenbaum, Mike Fainzilber.
Institutions: Weizmann Institute of Science.
Isolation of pure axonal cytoplasm (axoplasm) from peripheral nerve is crucial for biochemical studies of many biological processes. In this article, we demonstrate and describe a protocol for axoplasm isolation from adult rat sciatic nerve based on the following steps: (1) dissection of nerve fascicles and separation of connective tissue; (2) incubation of short segments of nerve fascicles in hypotonic medium to release myelin and lyse non-axonal structures; and (3) extraction of the remaining axon-enriched material. Proteomic and biochemical characterization of this preparation has confirmed a high degree of enrichment for axonal components.
Neuroscience, Issue 43, Axoplasm, nerve, isolation, method, rat
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Dorsal Column Steerability with Dual Parallel Leads using Dedicated Power Sources: A Computational Model
Authors: Dongchul Lee, Ewan Gillespie, Kerry Bradley.
Institutions: Neuromodulation.
In spinal cord stimulation (SCS), concordance of stimulation-induced paresthesia over painful body regions is a necessary condition for therapeutic efficacy. Since patient pain patterns can be unique, a common stimulation configuration is the placement of two leads in parallel in the dorsal epidural space. This construct provides flexibility in steering stimulation current mediolaterally over the dorsal column to achieve better pain-paresthesia overlap. Using a mathematical model with an accurate fiber diameter distribution, we studied the ability of dual parallel leads to steer stimulation between adjacent contacts on dual parallel leads using (1) a single source system, and (2) a multi-source system, with a dedicated current source for each contact. The volume conductor model of a low-thoracic spinal cord with epidurally-positioned dual parallel (2 mm separation) percutaneous leads was first created, and the electric field was calculated using ANSYS, a finite element modeling tool. The activating function for 10 um fibers was computed as the second difference of the extracellular potential along the nodes of Ranvier on the nerve fibers in the dorsal column. The volume of activation (VOA) and the central point of the VOA were computed using a predetermined threshold of the activating function. The model compared the field steering results with single source versus dedicated power source systems on dual 8-contact stimulation leads. The model predicted that the multi-source system can target more central points of stimulation on the dorsal column than a single source system (100 vs. 3) and the mean steering step for mediolateral steering is 0.02 mm for multi-source systems vs 1 mm for single source systems, a 50-fold improvement. The ability to center stimulation regions in the dorsal column with high resolution may allow for better optimization of paresthesia-pain overlap in patients.
Medicine, Issue 48, spinal cord stimulation, dorsal columns, current steering, field steering
Play Button
Whole-mount Immunohistochemical Analysis for Embryonic Limb Skin Vasculature: a Model System to Study Vascular Branching Morphogenesis in Embryo
Authors: Wenling Li, Yoh-suke Mukouyama.
Institutions: National Heart, Lung, and Blood Institute, National Institutes of Health.
Whole-mount immunohistochemical analysis for imaging the entire vasculature is pivotal for understanding the cellular mechanisms of branching morphogenesis. We have developed the limb skin vasculature model to study vascular development in which a pre-existing primitive capillary plexus is reorganized into a hierarchically branched vascular network. Whole-mount confocal microscopy with multiple labelling allows for robust imaging of intact blood vessels as well as their cellular components including endothelial cells, pericytes and smooth muscle cells, using specific fluorescent markers. Advances in this limb skin vasculature model with genetic studies have improved understanding molecular mechanisms of vascular development and patterning. The limb skin vasculature model has been used to study how peripheral nerves provide a spatial template for the differentiation and patterning of arteries. This video article describes a simple and robust protocol to stain intact blood vessels with vascular specific antibodies and fluorescent secondary antibodies, which is applicable for vascularized embryonic organs where we are able to follow the process of vascular development.
Developmental Biology, Issue 51, Confocal microscopy, whole-mount immunohistochemistry, mouse embryo, blood vessel, lymphatic vessel, vascular patterning, arterial differentiation
Play Button
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Authors: Zhongshu Tang, Shuihua Zhang, Chunsik Lee, Anil Kumar, Pachiappan Arjunan, Yang Li, Fan Zhang, Xuri Li.
Institutions: NIH, The Second Hospital of Harbin Medical University.
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result.
Neuroscience, Issue 50, optic nerve crush injury, retinal ganglion cell, glaucoma, optic neuropathy, retrograde labeling
Play Button
The Spared Nerve Injury (SNI) Model of Induced Mechanical Allodynia in Mice
Authors: Mette Richner, Ole J. Bjerrum, Anders Nykjaer, Christian B. Vaegter.
Institutions: Aarhus University, University of Copenhagen.
Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. The lesion results in marked hypersensitivity in the lateral area of the paw, which is innervated by the spared sural nerve. The non-operated side of the mouse can be used as a control. The advantages of the SNI model are the robustness of the response and that it doesn’t require expert microsurgical skills. The threshold for mechanical pain response is determined by testing with von Frey filaments of increasing bending force, which are repetitively pressed against the lateral area of the paw [3], [4]. A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.
Neuroscience, Issue 54, Sciatic, Injury, PNS, Mechanical allodynia, Neuropathic pain, von Frey
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
Play Button
An In Vitro Preparation for Eliciting and Recording Feeding Motor Programs with Physiological Movements in Aplysia californica
Authors: Jeffrey M. McManus, Hui Lu, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors1, allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper2. However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs2,3,4, but it is very difficult to directly record from individual neurons5. Additionally, in vivo, ingestive programs can be further divided into bites and swallows1,2, a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes6. The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.
Neuroscience, Issue 70, Physiology, Biomedical Engineering, Anatomy, Marine Biology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, neurobiology, buccal mass, semi-intact preparation, extracellular electrodes, extracellular recording, neurons, animal model
Play Button
Long-term Continuous EEG Monitoring in Small Rodent Models of Human Disease Using the Epoch Wireless Transmitter System
Authors: Andrew Zayachkivsky, Mark J. Lehmkuhle, F. Edward Dudek.
Institutions: Yale University School of Medicine, University of Utah.
Many progressive neurologic diseases in humans, such as epilepsy, require pre-clinical animal models that slowly develop the disease in order to test interventions at various stages of the disease process. These animal models are particularly difficult to implement in immature rodents, a classic model organism for laboratory study of these disorders. Recording continuous EEG in young animal models of seizures and other neurological disorders presents a technical challenge due to the small physical size of young rodents and their dependence on the dam prior to weaning. Therefore, there is not only a clear need for improving pre-clinical research that will better identify those therapies suitable for translation to the clinic but also a need for new devices capable of recording continuous EEG in immature rodents. Here, we describe the technology behind and demonstrate the use of a novel miniature telemetry system, specifically engineered for use in immature rats or mice, which is also effective for use in adult animals.
Neuroscience, Issue 101, Epilepsy, Seizures, Wireless, Pre-Clinical, Rat, Mouse, Hypoxia, Ischemia, Neonate
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.