JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Donor site morbidity of the medial plantar artery flap studied with gait and pressure analysis.
Foot Ankle Surg
PUBLISHED: 02-16-2015
The medial plantar artery flap (MPA) allows transfer of both glabrous (smooth and free from hair) and sensate tissue. It has been suggested that the non-weight bearing instep area of the foot provides tissue for transfer with minimal donor morbidity. However the abductor hallucis muscle and plantar fascia are dissected during flap harvest which may affect foot mechanics.
The tibial nerve transection model is a well-tolerated, validated, and reproducible model of denervation-induced skeletal muscle atrophy in rodents. Although originally developed and used extensively in the rat due to its larger size, the tibial nerve in mice is big enough that it can be easily manipulated with either crush or transection, leaving the peroneal and sural nerve branches of the sciatic nerve intact and thereby preserving their target muscles. Thus, this model offers the advantages of inducing less morbidity and impediment of ambulation than the sciatic nerve transection model and also allows investigators to study the physiologic, cellular and molecular biologic mechanisms regulating the process of muscle atrophy in genetically engineered mice. The tibial nerve supplies the gastrocnemius, soleus and plantaris muscles, so its transection permits the study of denervated skeletal muscle composed of fast twitch type II fibers and/or slow twitch type I fibers. Here we demonstrate the tibial nerve transection model in the C57Black6 mouse. We assess the atrophy of the gastrocnemius muscle, as a representative muscle, at 1, 2, and 4 weeks post-denervation by measuring muscle weights and fiber type specific cross-sectional area on paraffin-embedded histologic sections immunostained for fast twitch myosin.
17 Related JoVE Articles!
Play Button
Single-stage Dynamic Reanimation of the Smile in Irreversible Facial Paralysis by Free Functional Muscle Transfer
Authors: Jan Thiele, Holger Bannasch, G. Bjoern Stark, Steffen U. Eisenhardt.
Institutions: University of Freiburg Medical Centre.
Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell’s palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results.
Medicine, Issue 97, microsurgery, free microvascular tissue transfer, face, head, head and neck surgery, facial paralysis
Play Button
Ex Situ Normothermic Machine Perfusion of Donor Livers
Authors: Negin Karimian, Alix P.M. Matton, Andrie C. Westerkamp, Laura C. Burlage, Sanna op den Dries, Henri G.D. Leuvenink, Ton Lisman, Korkut Uygun, James F. Markmann, Robert J. Porte.
Institutions: University of Groningen, University Medical Center Groningen, University of Groningen, University Medical Center Groningen, Massachusetts General Hospital, Harvard Medical School, and Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School.
In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.
Medicine, Issue 99, Machine perfusion, liver transplantation, preservation, normothermic, hypothermic, human donor liver
Play Button
Demonstration of the Rat Ischemic Skin Wound Model
Authors: Andrea N. Trujillo, Shannon L. Kesl, Jacob Sherwood, Mack Wu, Lisa J. Gould.
Institutions: University of South Florida, University of South Florida, Kent Memorial Hospital.
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.
Medicine, Issue 98, Wound Healing, ischemia, rat, animal model, chronic wounds, laser Doppler, bipedicled flap
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
Play Button
A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research
Authors: Zuhaib Ibrahim, Damon S. Cooney, Jaimie T. Shores, Justin M. Sacks, Eric G. Wimmers, Steven C. Bonawitz, Chad Gordon, Dawn Ruben, Stefan Schneeberger, W. P. Andrew Lee, Gerald Brandacher.
Institutions: Johns Hopkins University School of Medicine.
Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA.
Medicine, Issue 80, Upper Extremity, Swine, Microsurgery, Tissue Transplantation, Transplantation Immunology, Surgical Procedures, Operative, Vascularized Composite Allografts, reconstructive transplantation, translational research, swine, hind limb allotransplantation, bone marrow, osteomyocutaneous, microvascular anastomosis, immunomodulation
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
Play Button
Murine Spinotrapezius Model to Assess the Impact of Arteriolar Ligation on Microvascular Function and Remodeling
Authors: Alexander Michael Guendel, Kyle S. Martin, Joshua Cutts, Patricia L. Foley, Alexander M. Bailey, Feilim Mac Gabhann, Trevor R. Cardinal, Shayn M. Peirce.
Institutions: University of Virginia, California Polytechnic State University, University of Virginia, Johns Hopkins University.
The murine spinotrapezius is a thin, superficial skeletal support muscle that extends from T3 to L4, and is easily accessible via dorsal skin incision. Its unique anatomy makes the spinotrapezius useful for investigation of ischemic injury and subsequent microvascular remodeling. Here, we demonstrate an arteriolar ligation model in the murine spinotrapezius muscle that was developed by our research team and previously published1-3. For certain vulnerable mouse strains, such as the Balb/c mouse, this ligation surgery reliably creates skeletal muscle ischemia and serves as a platform for investigating therapies that stimulate revascularization. Methods of assessment are also demonstrated, including the use of intravital and confocal microscopy. The spinotrapezius is well suited to such imaging studies due to its accessibility (superficial dorsal anatomy) and relative thinness (60-200 μm). The spinotrapezius muscle can be mounted en face, facilitating imaging of whole-muscle microvascular networks without histological sectioning. We describe the use of intravital microscopy to acquire metrics following a functional vasodilation procedure; specifically, the increase in arterilar diameter as a result of muscle contraction. We also demonstrate the procedures for harvesting and fixing the tissues, a necessary precursor to immunostaining studies and the use of confocal microscopy.
Biomedical Engineering, Issue 73, Medicine, Anatomy, Physiology, Surgery, Immunology, Hematology, Microvessels, Capillaries, Arterioles, Venules, Vascular Diseases, Ischemia, spinotrapezius, peripheral vascular disease, functional vasodilation, arteriolar ligation, vessels, circulation, confocal microscopy, animal model
Play Button
Tissue Preparation and Immunostaining of Mouse Sensory Nerve Fibers Innervating Skin and Limb Bones
Authors: Andrew J. Shepherd, Durga P. Mohapatra.
Institutions: The University of Iowa, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa.
Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue.
Neuroscience, Issue 59, pain, immunostaining, sensory nerve fiber, skin, bone, plantar punch, CGRP, NF200, TRPV1, Tubulin
Play Button
Chronic Constriction of the Sciatic Nerve and Pain Hypersensitivity Testing in Rats
Authors: Paul J. Austin, Ann Wu, Gila Moalem-Taylor.
Institutions: University of New South Wales .
Chronic neuropathic pain, resulting from damage to the central or peripheral nervous system, is a prevalent and debilitating condition, affecting 7-18% of the population1,2. Symptoms include spontaneous (tingling, burning, electric-shock like) pain, dysaesthesia, paraesthesia, allodynia (pain resulting from normally non-painful stimuli) and hyperalgesia (an increased response to painful stimuli). The sensory symptoms are co-morbid with behavioural disabilities, such as insomnia and depression. To study chronic neuropathic pain several animal models mimicking peripheral nerve injury have been developed, one of the most widely used is Bennett and Xie's (1988) unilateral sciatic nerve chronic constriction injury (CCI)3 (Figure 1). Here we present a method for performing CCI and testing pain hypersensitivity. CCI is performed under anaesthesia, with the sciatic nerve on one side exposed by making a skin incision, and cutting through the connective tissue between the gluteus superficialis and biceps femoris muscles. Four chromic gut ligatures are tied loosely around the sciatic nerve at 1 mm intervals, to just occlude but not arrest epineural blood flow. The wound is closed with sutures in the muscle and staples in the skin. The animal is then allowed to recover from surgery for 24 hrs before pain hypersensitivity testing begins. For behavioural testing, rats are placed into the testing apparatus and are allowed to habituate to the testing procedure. The area tested is the mid-plantar surface of the hindpaw (Figure 2), which falls within the sciatic nerve distribution. Mechanical withdrawal threshold is assessed by mechanically stimulating both injured and uninjured hindpaws using an electronic dynamic plantar von Frey aesthesiometer or manual von Frey hairs4. The mechanical withdrawal threshold is the maximum pressure exerted (in grams) that triggers paw withdrawal. For measurement of thermal withdrawal latency, first described by Hargreaves et al (1988), the hindpaw is exposed to a beam of radiant heat through a transparent glass surface using a plantar analgesia meter5,6. The withdrawal latency to the heat stimulus is recorded as the time for paw withdrawal in both injured and uninjured hindpaws. Following CCI, mechanical withdrawal threshold, as well as thermal withdrawal latency in the injured paw are both significantly reduced, compared to baseline measurements and the uninjured paw (Figure 3). The CCI model of peripheral nerve injury combined with pain hypersensitivity testing provides a model system to investigate the effectiveness of potential therapeutic agents to modify chronic neuropathic pain. In our laboratory, we utilise CCI alongside thermal and mechanical sensitivity of the hindpaws to investigate the role of neuro-immune interactions in the pathogenesis and treatment of neuropathic pain.
Medicine, Issue 61, Neuropathic pain, sciatic nerve, chronic constriction injury, pain hypersensitivity
Play Button
Acute and Chronic Tactile Sensory Testing after Spinal Cord Injury in Rats
Authors: Megan Ryan Detloff, Lesley C. Fisher, Rochelle J. Deibert, D. Michele Basso.
Institutions: School of Allied Medical Professions, The Ohio State University, Drexel University College of Medicine.
Spinal cord injury (SCI) impairs sensory systems causing allodynia1-8. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia3. Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI4-5. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically5. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery4-5. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.
Medicine, Issue 62, Rat, neuropathic pain, allodynia, tactile sensation, spinal cord injury, SCI, von Frey monofilaments
Play Button
Orthotopic Hind-Limb Transplantation in Rats
Authors: Robert Sucher, Rupert Oberhuber, Christian Margreiter, Guido Rumberg, Rishi Jindal, WP Andrew Lee, Raimund Margreiter, Johann Pratschke, Stefan Schneeberger, Gerald Brandacher.
Institutions: Innsbruck Medical University, University of Pittsburgh Medical Center.
Composite tissue allotransplantation (CTA) now represents a valid therapeutic option after the loss of a hand, forearm or digits and has become a novel therapeutic entity in reconstructive surgery. However, long term high-dose multi-drug immunosuppressive therapy is required to ensure graft survival, bearing the risk of serious side effects which halters broader application. Further progression in this field may depend on better understanding of basic immunology and ischemia reperfusion injury in composite tissue grafts. To date, orthotopic hind limb transplantation in rats has been the preferred rodent model for reconstructive transplantation (RT), however, it is an extremely demanding procedure that requires extraordinary microsurgical skills for reattachment of vasculature, bones, muscles and nerves. We have introduced the vascular cuff anastomosis technique to this model, providing a rapid and reliable approach to rat hind limb transplantation. This technique simplifies and shortens the surgical procedure and enables surgeons with basic microsurgical experience to successfully perform the operation with high survival and low complication rates. The technique seems to be well suited for immunological as well as ischemia reperfusion injury (IRI) studies.
JoVE Immunology, Issue 41, rat, hind limb, composite tissue, reconstructive transplantation
Play Button
A Novel Capsulorhexis Technique Using Shearing Forces with Cystotome
Authors: Shah M. R. Karim, Chin T. Ong, Tamsin J. Sleep.
Institutions: Hairmyres Hospital, NHS Lanarkshire, Department of Ophthalmology, South Devon Healthcare NHS Trust.
Purpose: To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Method: Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Results: Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. Conclusions: The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
JoVE Medicine, Issue 39, Phacoemulsification surgery, cataract surgery, capsulorhexis, capsulotomy, technique, Continuous curvilinear capsulorhexis, cystotome
Play Button
Viral-mediated Labeling and Transplantation of Medial Ganglionic Eminence (MGE) Cells for In Vivo Studies
Authors: Daniel Vogt, Pei-Rung Wu, Shawn F. Sorrells, Christine Arnold, Arturo Alvarez-Buylla, John L. R. Rubenstein.
Institutions: University of California San Francisco, University of California San Francisco.
GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.
Developmental Biology, Issue 98, MGE, interneuron, transplantation, lentivirus, cell labeling, somatostatin, Cre
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.