JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Asymmetry in food handling behavior of a tree-dwelling rodent (Sciurus vulgaris).
PUBLISHED: 02-26-2015
Asymmetry in motor patterns is present in a wide variety of animals. Many lateralized behaviors seem to depend on brain asymmetry, as it is the case of different tasks associated to food handling by several bird and mammal species. Here, we analyzed asymmetry in handling behavior of pine cones by red squirrels (Sciurus vulgaris). Red squirrels devote most of their daily activity to feeding, thus this species constitutes an appropriate model for studying asymmetry in food processing. We aimed to explore 1) the potential lateralization in handling of pine cones by squirrels, 2) the dominant pattern for this behavior (left- vs. right-handed), and 3) whether this pattern varies among populations and depending on the pine tree species available. Results revealed that red squirrels handle pine cones in an asymmetrical way, and that direction of asymmetry varies among populations and seems to be determined more by local influences rather than by the pine tree species.
Authors: R. Brian Roome, Jacqueline L. Vanderluit.
Published: 04-29-2015
The cylinder test is routinely used to predict focal ischemic damage to the forelimb motor cortex in rodents. When placed in the cylinder, rodents explore by rearing and touching the walls of the cylinder with their forelimb paws for postural support. Following ischemic injury to the forelimb sensorimotor cortex, rats rely more heavily on their unaffected forelimb paw for postural support resulting in fewer touches with their affected paw which is termed forelimb asymmetry. In contrast, focal ischemic damage in the mouse brain fails to result in comparable consistent deficits in forelimb asymmetry. While forelimb asymmetry deficits are infrequently observed, mice do demonstrate a novel behaviour post stroke termed “paw-dragging”. Paw-dragging is the tendency for a mouse to drag its affected paw along the cylinder wall rather than directly push off from the wall when dismounting from a rear to a four-legged stance. We have previously demonstrated that paw-dragging behaviour is highly sensitive to small cortical ischemic injuries to the forelimb motor cortex. Here we provide a detailed protocol for paw-dragging analysis. We define what a paw-drag is and demonstrate how to quantify paw-dragging behaviour. The cylinder test is a simple and inexpensive test to administer and does not require pre-training or food deprivation strategies. In using paw-dragging analysis with the cylinder test, it fills a niche for predicting cortical ischemic injuries such as photothrombosis and Endothelin-1 (ET-1)-induced ischemia – two models that are ever-increasing in popularity and produce smaller focal injuries than middle cerebral artery occlusion. Finally, measuring paw-dragging behaviour in the cylinder test will allow studies of functional recovery after cortical injury using a wide cohort of transgenic mouse strains where previous forelimb asymmetry analysis has failed to detect consistent deficits.
22 Related JoVE Articles!
Play Button
The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Institutions: University of Lethbridge.
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
Neuroscience, Issue 18, rat skilled reaching, rat reaching scale, rat, rat movement element rating scale, reaching elements
Play Button
Study Motor Skill Learning by Single-pellet Reaching Tasks in Mice
Authors: Chia-Chien Chen, Anthony Gilmore, Yi Zuo.
Institutions: University of California, Santa Cruz.
Reaching for and retrieving objects require precise and coordinated motor movements in the forelimb. When mice are repeatedly trained to grasp and retrieve food rewards positioned at a specific location, their motor performance (defined as accuracy and speed) improves progressively over time, and plateaus after persistent training. Once such reaching skill is mastered, its further maintenance does not require constant practice. Here we introduce a single-pellet reaching task to study the acquisition and maintenance of skilled forelimb movements in mice. In this video, we first describe the behaviors of mice that are commonly encountered in this learning and memory paradigm, and then discuss how to categorize these behaviors and quantify the observed results. Combined with mouse genetics, this paradigm can be utilized as a behavioral platform to explore the anatomical underpinnings, physiological properties, and molecular mechanisms of learning and memory.
Behavior, Issue 85, mouse, neuroscience, motor skill learning, single-pellet reaching, forelimb movements, Learning and Memory
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
The Attentional Set Shifting Task: A Measure of Cognitive Flexibility in Mice
Authors: Jillian M. Heisler, Juan Morales, Jennifer J. Donegan, Julianne D. Jett, Laney Redus, Jason C. O'Connor.
Institutions: University of Texas Health Science Center at San Antonio, South Texas Veteran's Health Care System.
Cognitive impairment, particularly involving dysfunction of circuitry within the prefrontal cortex (PFC), represents a core feature of many neuropsychiatric and neurodevelopmental disorders, including depression, post-traumatic stress disorder, schizophrenia and autism spectrum disorder. Deficits in cognitive function also represent the most difficult symptom domain to successfully treat, as serotonin reuptake inhibitors and tricyclic antidepressants have only modest effects. Functional neuroimaging studies and postmortem analysis of human brain tissue implicate the PFC as being a primary region of dysregulation in patients with these disorders. However, preclinical behavioral assays used to assess these deficits in mouse models which can be readily manipulated genetically and could provide the basis for studies of new treatment avenues have been underutilized. Here we describe the adaptation of a behavioral assay, the attentional set shifting task (AST), to be performed in mice to assess prefrontal cortex mediated cognitive deficits. The neural circuits underlying behavior during the AST are highly conserved across humans, nonhuman primates and rodents, providing excellent face, construct and predictive validity.
Behavior, Issue 96, cognitive flexibility, prefrontal cortex, behavior, attention, mouse, neuropsychiatric symptom, cognitive dysfunction
Play Button
The Infiltration-centrifugation Technique for Extraction of Apoplastic Fluid from Plant Leaves Using Phaseolus vulgaris as an Example
Authors: Brendan M. O'Leary, Arantza Rico, Sarah McCraw, Helen N. Fones, Gail M. Preston.
Institutions: University of Oxford, University of the Basque Country (UPV/EHU), University of Exeter.
The apoplast is a distinct extracellular compartment in plant tissues that lies outside the plasma membrane and includes the cell wall. The apoplastic compartment of plant leaves is the site of several important biological processes, including cell wall formation, cellular nutrient and water uptake and export, plant-endophyte interactions and defence responses to pathogens. The infiltration-centrifugation method is well established as a robust technique for the analysis of the soluble apoplast composition of various plant species. The fluid obtained by this method is commonly known as apoplast washing fluid (AWF). The following protocol describes an optimized vacuum infiltration and centrifugation method for AWF extraction from Phaseolus vulgaris (French bean) cv. Tendergreen leaves. The limitations of this method and the optimization of the protocol for other plant species are discussed. Recovered AWF can be used in a wide range of downstream experiments that seek to characterize the composition of the apoplast and how it varies in response to plant species and genotype, plant development and environmental conditions, or to determine how microorganisms grow in apoplast fluid and respond to changes in its composition.
Plant Biology, Issue 94, Apoplast, apoplast washing fluid, plant leaves, infiltration-centrifugation, plant metabolism, metabolomics, gas chromatography-mass spectrometry
Play Button
Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models
Authors: Teresa E. Lever, Sabrina M. Braun, Ryan T. Brooks, Rebecca A. Harris, Loren L. Littrell, Ryan M. Neff, Cameron J. Hinkel, Mitchell J. Allen, Mollie A. Ulsas.
Institutions: University of Missouri, University of Missouri, University of Missouri.
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models.
Medicine, Issue 97, mouse, murine, rodent, swallowing, deglutition, dysphagia, videofluoroscopy, radiation, iohexol, barium, palatability, taste, translational, disease models
Play Button
Operant Procedures for Assessing Behavioral Flexibility in Rats
Authors: Anne Marie Brady, Stan B. Floresco.
Institutions: St. Mary's College of Maryland, University of British Columbia.
Executive functions consist of multiple high-level cognitive processes that drive rule generation and behavioral selection. An emergent property of these processes is the ability to adjust behavior in response to changes in one’s environment (i.e., behavioral flexibility). These processes are essential to normal human behavior, and may be disrupted in diverse neuropsychiatric conditions, including schizophrenia, alcoholism, depression, stroke, and Alzheimer’s disease. Understanding of the neurobiology of executive functions has been greatly advanced by the availability of animal tasks for assessing discrete components of behavioral flexibility, particularly strategy shifting and reversal learning. While several types of tasks have been developed, most are non-automated, labor intensive, and allow testing of only one animal at a time. The recent development of automated, operant-based tasks for assessing behavioral flexibility streamlines testing, standardizes stimulus presentation and data recording, and dramatically improves throughput. Here, we describe automated strategy shifting and reversal tasks, using operant chambers controlled by custom written software programs. Using these tasks, we have shown that the medial prefrontal cortex governs strategy shifting but not reversal learning in the rat, similar to the dissociation observed in humans. Moreover, animals with a neonatal hippocampal lesion, a neurodevelopmental model of schizophrenia, are selectively impaired on the strategy shifting task but not the reversal task. The strategy shifting task also allows the identification of separate types of performance errors, each of which is attributable to distinct neural substrates. The availability of these automated tasks, and the evidence supporting the dissociable contributions of separate prefrontal areas, makes them particularly well-suited assays for the investigation of basic neurobiological processes as well as drug discovery and screening in disease models.
Behavior, Issue 96, executive function, behavioral flexibility, prefrontal cortex, strategy shifting, reversal learning, behavioral neuroscience, schizophrenia, operant
Play Button
The Use of High-resolution Infrared Thermography (HRIT) for the Study of Ice Nucleation and Ice Propagation in Plants
Authors: Michael Wisniewski, Gilbert Neuner, Lawrence V. Gusta.
Institutions: Agricultural Research Service (USDA-ARS), Kearneysville, WV, University of Innsbruck, University of Saskatechewan.
Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.
Environmental Sciences, Issue 99, Freeze avoidance, supercooling, ice nucleation active bacteria, frost tolerance, ice crystallization, antifreeze proteins, intrinsic nucleation, extrinsic nucleation, heterogeneous nucleation, homogeneous nucleation, differential thermal analysis
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Processing the Loblolly Pine PtGen2 cDNA Microarray
Authors: W. Walter Lorenz, Yuan-Sheng Yu, Marta Simões, Jeffrey F. D. Dean.
Institutions: University of Georgia (UGA), Instituto Tecnologia Química e Biológica UNL, Av. da República.
PtGen2 is a 26,496 feature cDNA microarray containing amplified loblolly pine ESTs. The array is produced in our laboratory for use by researchers studying gene expression in pine and other conifer species. PtGen2 was developed as a result of our gene discovery efforts in loblolly pine, and is comprised of sequences identified primarily from root tissues, but also from needle and stem.1,2 PtGen2 has been tested by hybridizing different Cy-dye labeled conifer target cDNAs, using both amplified and non-amplified indirect labeling methods, and also tested with a number of hybridization and washing conditions. This video focuses on the handling and processing of slides before and after pre-hybridization, as well as after hybridization, using some modifications to procedures developed previously.3,4 Also included, in text form only, are the protocols used for the generation, labeling and clean up of target cDNA s, as well as information on software used for downstream data processing. PtGen2 is printed with a proprietary print buffer that contains high concentrations of salt that can be difficult to remove completely. The slides are washed first in a warm SDS solution prior to pre-hybridization. After pre-hybridization, the slides are washed vigorously in several changes of water to complete removal of remaining salts. LifterSlips™ are then cleaned and positioned on the slides and labeled cDNA is carefully loaded onto the microarray by way of capillary action which provides for even distribution of the sample across the slide, and reduces the chance of bubble incorporation. Hybridization of targets to the array is done at 48°C in high humidity conditions. After hybridization, a series of standard washes are done at 53°C and room temperature for extended times. Processing PtGen2 slides using this technique reduces salt and SDS-derived artifacts often seen when the array is processed less rigorously. Hybridizing targets derived from several different conifer RNA sources, this processing protocol yielded fewer artifacts, reduced background, and provided better consistency among different experimental groups of arrays.
Plant Biology, Issue 25, Loblolly pine, P. taeda, cDNA, microarray, slide processing
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
An Improved Method of RNA Isolation from Loblolly Pine (P. taeda L.) and Other Conifer Species
Authors: W. Walter Lorenz, Yuan-Sheng Yu, Jeffrey F. D. Dean.
Institutions: University of Georgia (UGA).
Tissues isolated from conifer species, particularly those belonging to the Pinaceae family, such as loblolly pine (Pinus taeda L.), contain high concentrations of phenolic compounds and polysaccharides that interfere with RNA purification. Isolation of high-quality RNA from these species requires rigorous tissue collection procedures in the field and the employment of an RNA isolation protocol comprised of multiple organic extraction steps in order to isolate RNA of sufficient quality for microarray and other genomic analyses. The isolation of high-quality RNA from field-collected loblolly pine samples can be challenging, but several modifications to standard tissue and RNA isolation procedures greatly improve results. The extent of general RNA degradation increases if samples are not properly collected and transported from the field, especially during large-scale harvests. Total RNA yields can be increased significantly by pulverizing samples in a liquid nitrogen freezer mill prior to RNA isolation, especially when samples come from woody tissues. This is primarily due to the presence of oxidizing agents, such as phenolic compounds, and polysaccharides that are both present at high levels in extracts from the woody tissues of most conifer species. If not removed, these contaminants can carry over leading to problems, such as RNA degradation, that result in low yields and a poor quality RNA sample. Carryover of phenolic compounds, as well as polysaccharides, can also reduce or even completely eliminate the activity of reverse transcriptase or other polymerases commonly used for cDNA synthesis. In particular, RNA destined to be used as template for double-stranded cDNA synthesis in the generation of cDNA libraries, single-stranded cDNA synthesis for PCR or qPCR's, or for the synthesis of microarray target materials must be of the highest quality if researchers expect to obtain optimal results. RNA isolation techniques commonly employed for many other plant species are often insufficient in their ability to remove these contaminants from conifer samples and thus do not yield total RNA samples suitable for downstream manipulations. In this video we demonstrate methods for field collection of conifer tissues, beginning with the felling of a forty year-old tree, to the harvesting of phloem, secondary xylem, and reaction wood xylem. We also demonstrate an RNA isolation protocol that has consistently yielded high-quality RNA for subsequent enzymatic manipulations.
Plant Biology, Issue 36, RNA isolation, loblolly pine, Pinus taeda, conifer, wood, xylem, phloem
Play Button
The Vermicelli and Capellini Handling Tests: Simple quantitative measures of dexterous forepaw function in rats and mice
Authors: Kelly A. Tennant, Aaron L. Asay, Rachel P. Allred, Angela R. Ozburn, Jeffrey A. Kleim, Theresa A. Jones.
Institutions: University of Texas at Austin, University of Texas at Austin, University of Florida, University of Texas Southwestern Medical Center, University of Florida.
Previous characterizations of rodent eating behavior have revealed that they use coordinated forepaw movements to manipulate food pieces. We have extended upon this work to develop a simple quantitative measure of forepaw dexterity that is sensitive to lateralized impairments and age-dependent changes. Rodents learn skillful forepaw and digit movements to manage thin pasta pieces, which they eagerly consume. We have previously described methods for quantifying vermicelli handling in rats and showed that the measures are very sensitive to forelimb impairments resulting from unilateral ischemic lesions, middle cerebral artery occlusions and unilateral striatal dopamine depletion [Allred, R.P., Adkins, D.L., Woodlee, M.T., Husbands, L.C., Maldonado M.A., Kane, J.R., Schallert, T. & Jones, T.A. The Vermicelli Handling Test: a simple quantitative measure of dexterous forepaw function in rats. J. Neurosci. Methods 170, 229-244 (2008)]. Here we present a more detailed protocol for this test in rats and compare it with a newly developed version for mice, the Capellini Handling Test. Rats and mice are videotaped while handling short lengths of uncooked vermicelli or capellini pasta, respectively, with a camera positioned to optimize the view of paw movements. Slow motion video playback allows for the identification of forepaw adjustments, defined as any distinct removal and replacement of the paw, or of any number of digits, on the pasta piece after eating commences. Forepaw adjustments per piece are averaged over trials per each testing session. Repeated testing permits sensitive quantitative analysis of changes in forepaw dexterity over time. Protocols for pre-testing habituation and handling practice, as well as procedures for characterizing atypical handling patterns, are described. Because rats and mice perform the pasta handling tests slightly differently, species-specific differences in administration and scoring of these tests are highlighted. All animal use was in accordance with protocols approved by the University of Texas at Austin Animal Care and Use Committee.
JoVE Neuroscience, Issue 41, manual dexterity, food handling, pasta, rodent models, upper extremity impairment
Play Button
Peering into the Dynamics of Social Interactions: Measuring Play Fighting in Rats
Authors: Brett T. Himmler, Vivien C. Pellis, Sergio M. Pellis.
Institutions: University of Lethbridge.
Play fighting in the rat involves attack and defense of the nape of the neck, which if contacted, is gently nuzzled with the snout. Because the movements of one animal are countered by the actions of its partner, play fighting is a complex, dynamic interaction. This dynamic complexity raises methodological problems about what to score for experimental studies. We present a scoring schema that is sensitive to the correlated nature of the actions performed. The frequency of play fighting can be measured by counting the number of playful nape attacks occurring per unit time. However, playful defense, as it can only occur in response to attack, is necessarily a contingent measure that is best measured as a percentage (#attacks defended/total # attacks X 100%). How a particular attack is defended against can involve one of several tactics, and these are contingent on defense having taken place; consequently, the type of defense is also best expressed contingently as a percentage. Two experiments illustrate how these measurements can be used to detect the effect of brain damage on play fighting even when there is no effect on overall playfulness. That is, the schema presented here is designed to detect and evaluate changes in the content of play following an experimental treatment.
Neuroscience, Issue 71, Neurobiology, Behavior, Psychology, Anatomy, Physiology, Medicine, Play behavior, play, fighting, wrestling, grooming, allogrooming, social interaction, rat, behavioral analysis, animal model
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control
Authors: Soroush Parsa, Viviana Ortiz, Fernando E. Vega.
Institutions: International Center for Tropical Agriculture (CIAT), Cali, Colombia , United States Department of Agriculture, Beltsville, Maryland, USA.
Beauveria bassiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common bean (Phaseolus vulgaris), in preparation for subsequent evaluations of endophytic biological control. Plants are grown from surface-sterilized seeds for two weeks before receiving a B. bassiana treatment of 108 conidia/ml (or water) applied either as a foliar spray or a soil drench. Two weeks later, the plants are harvested and their leaves, stems and roots are sampled to evaluate endophytic fungal colonization. For this, samples are individually surface sterilized, cut into multiple sections, and incubated in potato dextrose agar media for 20 days. The media is inspected every 2-3 days to observe fungal growth associated with plant sections and record the occurrence of B. bassiana to estimate the extent of its endophytic colonization. Analyses of inoculation success compare the occurrence of B. bassiana within a given plant part (i.e. leaves, stems or roots) across treatments and controls. In addition to the inoculation method, the specific outcome of the experiment may depend on the target crop species or variety, the fungal entomopathogen species strain or isolate used, and the plant's growing conditions.
Bioengineering, Issue 74, Plant Biology, Microbiology, Infection, Environmental Sciences, Molecular Biology, Mycology, Entomology, Botany, Pathology, Agriculture, Pest Control, Fungi, Entomopathogen, Endophyte, Pest, Pathogen, Phaseolus vulgaris, Beauveria bassiana, Sustainable Agriculture, hemocytometer, inoculation, fungus
Play Button
Technique for Studying Arthropod and Microbial Communities within Tree Tissues
Authors: Nicholas C Aflitto, Richard W Hofstetter, Reagan McGuire, David D Dunn, Kristen A Potter.
Institutions: Northern Arizona University, Acoustic Ecology Institute.
Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a ‘phloem sandwich’ and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories.
Environmental Sciences, Issue 93, phloem sandwich, pine, bark beetles, mites, acoustics, phloem
Play Button
Measuring Sensitivity to Viewpoint Change with and without Stereoscopic Cues
Authors: Jason Bell, Edwin Dickinson, David R. Badcock, Frederick A. A. Kingdom.
Institutions: Australian National University, University of Western Australia, McGill University.
The speed and accuracy of object recognition is compromised by a change in viewpoint; demonstrating that human observers are sensitive to this transformation. Here we discuss a novel method for simulating the appearance of an object that has undergone a rotation-in-depth, and include an exposition of the differences between perspective and orthographic projections. Next we describe a method by which human sensitivity to rotation-in-depth can be measured. Finally we discuss an apparatus for creating a vivid percept of a 3-dimensional rotation-in-depth; the Wheatstone Eight Mirror Stereoscope. By doing so, we reveal a means by which to evaluate the role of stereoscopic cues in the discrimination of viewpoint rotated shapes and objects.
Behavior, Issue 82, stereo, curvature, shape, viewpoint, 3D, object recognition, rotation-in-depth (RID)
Play Button
A Method for Remotely Silencing Neural Activity in Rodents During Discrete Phases of Learning
Authors: Siobhan Robinson, Julia S. Adelman.
Institutions: Oberlin College.
This protocol describes how to temporarily and remotely silence neuronal activity in discrete brain regions while animals are engaged in learning and memory tasks. The approach combines pharmacogenetics (Designer-Receptors-Exclusively-Activated-by-Designer-Drugs) with a behavioral paradigm (sensory preconditioning) that is designed to distinguish between different forms of learning. Specifically, viral-mediated delivery is used to express a genetically modified inhibitory G-protein coupled receptor (the Designer Receptor) into a discrete brain region in the rodent. Three weeks later, when designer receptor expression levels are high, a pharmacological agent (the Designer Drug) is administered systemically 30 min prior to a specific behavioral session. The drug has affinity for the designer receptor and thus results in inhibition of neurons that express the designer receptor, but is otherwise biologically inert. The brain region remains silenced for 2-5 hr (depending on the dose and route of administration). Upon completion of the behavioral paradigm, brain tissue is assessed for correct placement and receptor expression. This approach is particularly useful for determining the contribution of individual brain regions to specific components of behavior and can be used across any number of behavioral paradigms.
Behavior, Issue 100, Pharmacogenetics, behavior, neuroscience, temporary neural inactivation, sensory preconditioning, rodent, cortex, adeno-associated virus, DREADDs, learning, stereotaxic surgery
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.