JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.
PUBLISHED: 02-27-2015
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.
We present a method for deriving natural killer (NK) cells from undifferentiated hESCs and iPSCs using a feeder-free approach. This method gives rise to high levels of NK cells after 4 weeks culture and can undergo further 2-log expansion with artificial antigen presenting cells. hESC- and iPSC-derived NK cells developed in this system have a mature phenotype and function. The production of large numbers of genetically modifiable NK cells is applicable for both basic mechanistic as well as anti-tumor studies. Expression of firefly luciferase in hESC-derived NK cells allows a non-invasive approach to follow NK cell engraftment, distribution, and function. We also describe a dual-imaging scheme that allows separate monitoring of two different cell populations to more distinctly characterize their interactions in vivo. This method of derivation, expansion, and dual in vivo imaging provides a reliable approach for producing NK cells and their evaluation which is necessary to improve current NK cell adoptive therapies.
21 Related JoVE Articles!
Play Button
Expansion, Purification, and Functional Assessment of Human Peripheral Blood NK Cells
Authors: Srinivas S. Somanchi, Vladimir V. Senyukov, Cecele J. Denman, Dean A. Lee.
Institutions: MD Anderson Cancer Center - University of Texas.
Natural killer (NK) cells play an important role in immune surveillance against a variety of infectious microorganisms and tumors. Limited availability of NK cells and ability to expand in vitro has restricted development of NK cell immunotherapy. Here we describe a method to efficiently expand vast quantities of functional NK cells ex vivo using K562 cells expressing membrane-bound IL21, as an artificial antigen-presenting cell (aAPC). NK cell adoptive therapies to date have utilized a cell product obtained by steady-state leukapheresis of the donor followed by depletion of T cells or positive selection of NK cells. The product is usually activated in IL-2 overnight and then administered the following day 1. Because of the low frequency of NK cells in peripheral blood, relatively small numbers of NK cells have been delivered in clinical trials. The inability to propagate NK cells in vitro has been the limiting factor for generating sufficient cell numbers for optimal clinical outcome. Some expansion of NK cells (5-10 fold over 1-2 weeks) has be achieved through high-dose IL-2 alone 2. Activation of autologous T cells can mediate NK cell expansion, presumably also through release of local cytokine 3. Support with mesenchymal stroma or artificial antigen presenting cells (aAPCs) can support the expansion of NK cells from both peripheral blood and cord blood 4. Combined NKp46 and CD2 activation by antibody-coated beads is currently marketed for NK cell expansion (Miltenyi Biotec, Auburn CA), resulting in approximately 100-fold expansion in 21 days. Clinical trials using aAPC-expanded or -activated NK cells are underway, one using leukemic cell line CTV-1 to prime and activate NK cells5 without significant expansion. A second trial utilizes EBV-LCL for NK cell expansion, achieving a mean 490-fold expansion in 21 days6. The third utilizes a K562-based aAPC transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mIL-15)7, which achieved a mean NK expansion 277-fold in 21 days. Although, the NK cells expanded using K562-41BBL-mIL15 aAPC are highly cytotoxic in vitro and in vivo compared to unexpanded NK cells, and participate in ADCC, their proliferation is limited by senescence attributed to telomere shortening8. More recently a 350-fold expansion of NK cells was reported using K562 expressing MICA, 4-1BBL and IL159. Our method of NK cell expansion described herein produces rapid proliferation of NK cells without senescence achieving a median 21,000-fold expansion in 21 days.
Immunology, Issue 48, Natural Killer Cells, Tumor Immunology, Antigen Presenting Cells, Cytotoxicity
Play Button
Preparation and Use of HIV-1 Infected Primary CD4+ T-Cells as Target Cells in Natural Killer Cell Cytotoxic Assays
Authors: Zachary B. Davis, Jeffrey P. Ward, Edward Barker.
Institutions: Rush University Medical Center.
Natural killer (NK) cells are a vital component of the innate immune response to virus-infected cells. It is important to understand the ability of NK cells to recognize and lyse HIV-1 infected cells because identifying any aberrancy in NK cell function against HIV-infected cells could potentially lead to therapies that would enhance their cytolytic activity. There is a need to use HIV-infected primary T-cell blasts as target cells rather then infected-T-cell lines in the cytotoxicity assays. T-cell lines, even without infection, are quite susceptible to NK cell lysis. Furthermore, it is necessary to use autologous primary cells to prevent major histocompatibility complex class I mismatches between the target and effector cell that will result in lysis. Early studies evaluating NK cell cytolytic responses to primary HIV-infected cells failed to show significant killing of the infected cells 1,2. However, using HIV-1 infected primary T-cells as target cells in NK cell functional assays has been difficult due the presence of contaminating uninfected cells 3. This inconsistent infected cell to uninfected cell ratio will result in variation in NK cell killing between samples that may not be due to variability in donor NK cell function. Thus, it would be beneficial to work with a purified infected cell population in order to standardize the effector to target cell ratios between experiments 3,4. Here we demonstrate the isolation of a highly purified population of HIV-1 infected cells by taking advantage of HIV-1's ability to down-modulate CD4 on infected cells and the availability of commercial kits to remove dead or dying cells 3-6. The purified infected primary T-cell blasts can then be used as targets in either a degranulation or cytotoxic assay with purified NK cells as the effector population 5-7. Use of NK cells as effectors in a degranulation assay evaluates the ability of an NK cell to release the lytic contents of specialized lysosomes 8 called "cytolytic granules". By staining with a fluorochrome conjugated antibody against CD107a, a lysosomal membrane protein that becomes expressed on the NK cell surface when the cytolytic granules fuse to the plasma membrane, we can determine what percentage of NK cells degranulate in response to target cell recognition. Alternatively, NK cell lytic activity can be evaluated in a cytotoxic assay that allows for the determination of the percentage of target cells lysed by release of 51Cr from within the target cell in the presence of NK cells.
Immunology, Issue 49, innate immunity, HIV-1, natural killer cell, cytolytic assay, degranulation assay, primary lymphocytes
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
Enrichment of NK Cells from Human Blood with the RosetteSep Kit from StemCell Technologies
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Natural killer (NK) cells are large granular cytotoxic lymphocytes that belong to the innate immune system and play major roles in fighting against cancer and infections, but are also implicated in the early stages of pregnancy and transplant rejection. These cells are present in peripheral blood, from which they can be isolated. Cells can be isolated using either positive or negative selection. For positive selection we use antibodies directed to a surface marker present only on the cells of interest whereas for negative selection we use cocktails of antibodies targeted to surface markers present on all cells but the cells of interest. This latter technique presents the advantage of leaving the cells of interest free of antibodies, thereby reducing the risk of unwanted cell activation or differenciation. In this video-protocol we demonstrate how to separate NK cells from human blood by negative selection, using the RosetteSep kit from StemCell technologies. The procedure involves obtaining human peripheral blood (under an institutional review board-approved protocol to protect the human subjects) and mixing it with a cocktail of antibodies that will bind to markers absent on NK cells, but present on all other mononuclear cells present in peripheral blood (e.g., T lymphocytes, monocytes...). The antibodies present in the cocktail are conjugated to antibodies directed to glycophorin A on erythrocytes. All unwanted cells and red blood cells will therefore be trapped in complexes. The mix of blood and antibody cocktail is then diluted, overlayed on a Histopaque gradient, and centrifuged. NK cells (>80% pure) can be collected at the interface between the Histopaque and the diluted plasma. Similar cocktails are available for enrichment of other cell populations, such as human T lymphocytes.
Immunology, issue 8, blood, cell isolation, natural killer, lymphocyte, primary cells, negative selection, PBMC, Ficoll gradient, cell separation
Play Button
Harnessing the Bioorthogonal Inverse Electron Demand Diels-Alder Cycloaddition for Pretargeted PET Imaging
Authors: Thomas Reiner, Jason S. Lewis, Brian M. Zeglis.
Institutions: Memorial Sloan Kettering Cancer Center.
Due to their exquisite affinity and specificity, antibodies have become extremely promising vectors for the delivery of radioisotopes to cancer cells for PET imaging. However, the necessity of labeling antibodies with radionuclides with long physical half-lives often results in high background radiation dose rates to non-target tissues. In order to circumvent this issue, we have employed a pretargeted PET imaging strategy based on the inverse electron demand Diels-Alder cycloaddition reaction. The methodology decouples the antibody from the radioactivity and thus exploits the positive characteristics of antibodies, while eschewing their pharmacokinetic drawbacks. The system is composed of four steps: (1) the injection of a mAb-trans-cyclooctene (TCO) conjugate; (2) a localization time period during which the antibody accumulates in the tumor and clears from the blood; (3) the injection of the radiolabeled tetrazine; and (4) the in vivo click ligation of the components followed by the clearance of excess radioligand. In the example presented in the work at hand, a 64Cu-NOTA-labeled tetrazine radioligand and a trans-cyclooctene-conjugated humanized antibody (huA33) were successfully used to delineate SW1222 colorectal cancer tumors with high tumor-to-background contrast. Further, the pretargeting methodology produces high quality images at only a fraction of the radiation dose to non-target tissue created by radioimmunoconjugates directly labeled with 64Cu or 89Zr. Ultimately, the modularity of this protocol is one of its greatest assets, as the trans-cyclooctene moiety can be appended to any non-internalizing antibody, and the tetrazine can be attached to a wide variety of radioisotopes.
Bioengineering, Issue 96, Positron Emission Tomography, Click Chemistry, Pretargeting, Tetrazine, Trans-cyclooctene, Inverse Electron Demand Diels-Alder Cycloaddition
Play Button
A Colorimetric Assay that Specifically Measures Granzyme B Proteolytic Activity: Hydrolysis of Boc-Ala-Ala-Asp-S-Bzl
Authors: Magdalena Hagn, Vivien R. Sutton, Joseph A. Trapani.
Institutions: Peter MacCallum Cancer Centre.
The serine protease Granzyme B (GzmB) mediates target cell apoptosis when released by cytotoxic T lymphocytes (CTL) or natural killer (NK) cells. GzmB is the most studied granzyme in humans and mice and therefore, researchers need specific and reliable tools to study its function and role in pathophysiology. This especially necessitates assays that do not recognize proteases such as caspases or other granzymes that are structurally or functionally related. Here, we apply GzmB’s preference for cleavage after aspartic acid residues in a colorimetric assay using the peptide thioester Boc-Ala-Ala-Asp-S-Bzl. GzmB is the only mammalian serine protease capable of cleaving this substrate. The substrate is cleaved with similar efficiency by human, mouse and rat GzmB, a property not shared by other commercially available peptide substrates, even some that are advertised as being suitable for this purpose. This protocol is demonstrated using unfractionated lysates from activated NK cells or CTL and is also suitable for recombinant proteases generated in a variety of prokaryotic and eukaryotic systems, provided the correct controls are used. This assay is a highly specific method to ascertain the potential pro-apoptotic activity of cytotoxic molecules in mammalian lymphocytes, and of their recombinant counterparts expressed by a variety of methodologies.
Chemistry, Issue 93, Granzyme B, serine protease, peptide thioesters, BOC-Ala-Ala-Asp-S-Bzl, colorimetric substrate, hydrolysis, asp-ase activity
Play Button
Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer
Authors: Peilin Zheng, Grant Bertolet, Yuhui Chen, Shengjian Huang, Dongfang Liu.
Institutions: Texas Children's Hospital, Baylor College of Medicine, Baylor College of Medicine.
The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer's attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution.
Immunology, Issue 96, Natural killer cells, immunological synapse, imaging, STED, supported lipid bilayer, super-resolution
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
A Mouse Tumor Model of Surgical Stress to Explore the Mechanisms of Postoperative Immunosuppression and Evaluate Novel Perioperative Immunotherapies
Authors: Lee-Hwa Tai, Christiano Tanese de Souza, Shalini Sahi, Jiqing Zhang, Almohanad A Alkayyal, Abhirami Anu Ananth, Rebecca A.C. Auer.
Institutions: Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa, The Second Hospital of Shandong University, University of Tabuk, Ottawa General Hospital.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.
Medicine, Issue 85, mouse, tumor model, surgical stress, immunosuppression, perioperative immunotherapy, metastases
Play Button
Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy
Authors: Emily M. Mace, Jordan S. Orange.
Institutions: Texas Children's Hospital and Baylor College of Medicine.
Natural killer cells form tightly regulated, finely tuned immunological synapses (IS) in order to lyse virally infected or tumorigenic cells. Dynamic actin reorganization is critical to the function of NK cells and the formation of the IS. Imaging of F-actin at the synapse has traditionally utilized confocal microscopy, however the diffraction limit of light restricts resolution of fluorescence microscopy, including confocal, to approximately 200 nm. Recent advances in imaging technology have enabled the development of subdiffraction limited super-resolution imaging. In order to visualize F-actin architecture at the IS we recapitulate the NK cell cytotoxic synapse by adhering NK cells to activating receptor on glass. We then image proteins of interest using two-color stimulated emission depletion microscopy (STED). This results in <80 nm resolution at the synapse. Herein we describe the steps of sample preparation and the acquisition of images using dual color STED nanoscopy to visualize F-actin at the NK IS. We also illustrate optimization of sample acquisition using Leica SP8 software and time-gated STED. Finally, we utilize Huygens software for post-processing deconvolution of images.
Immunology, Issue 85, natural killer cells, F-actin, immune synapse, super-resolution microscopy, two-color stimulated emission depletion (STED) microscopy
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
Play Button
Accelerated Type 1 Diabetes Induction in Mice by Adoptive Transfer of Diabetogenic CD4+ T Cells
Authors: Gregory Berry, Hanspeter Waldner.
Institutions: Pennsylvania State University College of Medicine.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.
Immunology, Issue 75, Medicine, Cellular Biology, Molecular Biology, Microbiology, Anatomy, Physiology, Biomedical Engineering, Genetics, Surgery, Type 1 diabetes, CD4+ T cells, diabetogenic T cells, T cell transfer, diabetes induction method, diabetes, T cells, isolation, cell sorting, FACS, transgenic mice, animal model
Play Button
Artificial Antigen Presenting Cell (aAPC) Mediated Activation and Expansion of Natural Killer T Cells
Authors: James E. East, Wenji Sun, Tonya J. Webb.
Institutions: University of Maryland .
Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells1. Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules2. NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity3-6, and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d 7. The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines8. Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines9,10. In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients11. However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells12, 13. Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is a fundamental requirement of NKT cell activation, antigen: CD1d-Ig complexes provide a reliable method to isolate, activate, and expand effector NKT cell populations.
Immunology, Issue 70, Medicine, Molecular Biology, Cellular Biology, Microbiology, Cancer Biology, Natural killer T cells, in vitro expansion, cancer immunology, artificial antigen presenting cells, adoptive transfer
Play Button
Human In Vitro Suppression as Screening Tool for the Recognition of an Early State of Immune Imbalance
Authors: Jill Waukau, Jeffrey Woodliff, Sanja Glisic.
Institutions: Medical College of Wisconsin , Medical College of Wisconsin , Medical College of Wisconsin .
Regulatory T cells (Tregs) are critical mediators of immune tolerance to self-antigens. In addition, they are crucial regulators of the immune response following an infection. Despite efforts to identify unique surface marker on Tregs, the only unique feature is their ability to suppress the proliferation and function of effector T cells. While it is clear that only in vitro assays can be used in assessing human Treg function, this becomes problematic when assessing the results from cross-sectional studies where healthy cells and cells isolated from subjects with autoimmune diseases (like Type 1 Diabetes-T1D) need to be compared. There is a great variability among laboratories in the number and type of responder T cells, nature and strength of stimulation, Treg:responder ratios and the number and type of antigen-presenting cells (APC) used in human in vitro suppression assays. This variability makes comparison between studies measuring Treg function difficult. The Treg field needs a standardized suppression assay that will work well with both healthy subjects and those with autoimmune diseases. We have developed an in vitro suppression assay that shows very little intra-assay variability in the stimulation of T cells isolated from healthy volunteers compared to subjects with underlying autoimmune destruction of pancreatic β-cells. The main goal of this piece is to describe an in vitro human suppression assay that allows comparison between different subject groups. Additionally, this assay has the potential to delineate a small loss in nTreg function and anticipate further loss in the future, thus identifying subjects who could benefit from preventive immunomodulatory therapy1. Below, we provide thorough description of the steps involved in this procedure. We hope to contribute to the standardization of the in vitro suppression assay used to measure Treg function. In addition, we offer this assay as a tool to recognize an early state of immune imbalance and a potential functional biomarker for T1D.
Immunology, Issue 53, suppression, regulatory T cells, Tregs, activated T cells, autoimmune disease, Type 1 Diabetes (T1D)
Play Button
Methods to Assess Beta Cell Death Mediated by Cytotoxic T Lymphocytes
Authors: Jing Chen, Scott Grieshaber, Clayton E. Mathews.
Institutions: University of Florida.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes. Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents.
Immunology, Issue 52, cell, Type 1 Diabetes, Autoimmunity, Cytotoxic T Lymphocyte
Play Button
Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface
Authors: Marcia Arenas-Hernandez, Elly N. Sanchez-Rodriguez, Tara N. Mial, Sarah A. Robertson, Nardhy Gomez-Lopez.
Institutions: Wayne State University School of Medicine, The University of Adelaide, Wayne State University School of Medicine, NICHD/NIH/DHHS.
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Immunology, Issue 99, Decidua, Dissociation, Isolation, Leukocytes, Myometrium, Placenta, Pregnancy, Uterus
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.