JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Description and utilization of the United States department of defense serum repository: a review of published studies, 1985-2012.
PUBLISHED: 02-28-2015
Specimens in the United States Department of Defense (DoD) Serum Repository have accumulated in frozen storage since 1985 when the DoD began universal screening for human immunodeficiency virus. Use of the stored serum for health research has been carefully controlled, but the resulting publications have never been systematically identified or described. The Armed Forces Health Surveillance Center (AFHSC) information systems and open (online) sites were used as data sources. Through 2012, the repository contained 54,542,658 serum specimens, of which 228,610 (0.42%) have been accessed for any purpose. Between 2001 (the first year that comprehensive, digital records were available) and 2012, 65.2% of all approved requests for serum were for healthcare or public health investigations, but greater than 99% of all shipped samples were for research. Using two different methods - a structure search of PubMed and an exhaustive online search based on records from AFHSC - we identified 76 articles published between October 1988 and March 2013 that covered a multitude of infectious diseases, injuries, environmental exposures and mental health conditions through analysis of antibodies, biological metabolic, signaling and regulatory substances, Vitamin D, organochlorines, dioxin, omega-3-fatty acid, and portions of human deoxyribonucleic acid. Despite its operational and scientific value, it appears that the DoD Serum Repository has been underutilized. Changes to policy and increased capacity for specimen processing could increase use of the repository without risking privacy or the availability of specimens for the healthcare of individual service members in the future.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
26 Related JoVE Articles!
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy
Authors: Johnny L. Carson.
Institutions: The University of North Carolina at Chapel Hill.
Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum “cast” intended for examination by transmission electron microscopy. Specimens are subjected to ultrarapid freezing rates, often in the presence of cryoprotective agents to limit ice crystal formation, with subsequent fracturing of the specimen at liquid nitrogen cooled temperatures under high vacuum. The resultant fractured surface is replicated and stabilized by evaporation of carbon and platinum from an angle that confers surface three-dimensional detail to the cast. This technique has proved particularly enlightening for the investigation of cell membranes and their specializations and has contributed considerably to the understanding of cellular form to related cell function. In this report, we survey the instrument requirements and technical protocol for performing freeze-fracture, the associated nomenclature and characteristics of fracture planes, variations on the conventional procedure, and criteria for interpretation of freeze-fracture images. This technique has been widely used for ultrastructural investigation in many areas of cell biology and holds promise as an emerging imaging technique for molecular, nanotechnology, and materials science studies.
Biophysics, Issue 91, Freeze-fracture; Freeze-etch; Membranes; Intercellular junctions; Materials science; Nanotechnology; Electron microscopy
Play Button
Human Skeletal Muscle Biopsy Procedures Using the Modified Bergström Technique
Authors: R. Andrew Shanely, Kevin A. Zwetsloot, N. Travis Triplett, Mary Pat Meaney, Gerard E. Farris, David C. Nieman.
Institutions: Appalacian State University, Appalachian State University, Carolinas Medical Center NorthEast.
The percutaneous biopsy technique enables researchers and clinicians to collect skeletal muscle tissue samples. The technique is safe and highly effective. This video describes the percutaneous biopsy technique using a modified Bergström needle to obtain skeletal muscle tissue samples from the vastus lateralis of human subjects. The Bergström needle consists of an outer cannula with a small opening (‘window’) at the side of the tip and an inner trocar with a cutting blade at the distal end. Under local anesthesia and aseptic conditions, the needle is advanced into the skeletal muscle through an incision in the skin, subcutaneous tissue, and fascia. Next, suction is applied to the inner trocar, the outer trocar is pulled back, skeletal muscle tissue is drawn into the window of the outer cannula by the suction, and the inner trocar is rapidly closed, thus cutting or clipping the skeletal muscle tissue sample. The needle is rotated 90° and another cut is made. This process may be repeated three more times. This multiple cutting technique typically produces a sample of 100-200 mg or more in healthy subjects and can be done immediately before, during, and after a bout of exercise or other intervention. Following post-biopsy dressing of the incision site, subjects typically resume their activities of daily living right away and can fully participate in vigorous physical activity within 48-72 hr. Subjects should avoid heavy resistance exercise for 48 hr to reduce the risk of herniation of the muscle through the incision in the fascia.
Medicine, Issue 91, percutaneous muscle biopsy, needle biopsy, suction-modified, metabolism, enzyme activity, mRNA, gene function, fiber type, histology, metabolomics, skeletal muscle function, humans
Play Button
Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro
Authors: Alec S.T. Smith, Christopher J. Long, Christopher McAleer, Nathaniel Bobbitt, Balaji Srinivasan, James J. Hickman.
Institutions: University of Central Florida.
The development of more predictive and biologically relevant in vitro assays is predicated on the advancement of versatile cell culture systems which facilitate the functional assessment of the seeded cells. To that end, microscale cantilever technology offers a platform with which to measure the contractile functionality of a range of cell types, including skeletal, cardiac, and smooth muscle cells, through assessment of contraction induced substrate bending. Application of multiplexed cantilever arrays provides the means to develop moderate to high-throughput protocols for assessing drug efficacy and toxicity, disease phenotype and progression, as well as neuromuscular and other cell-cell interactions. This manuscript provides the details for fabricating reliable cantilever arrays for this purpose, and the methods required to successfully culture cells on these surfaces. Further description is provided on the steps necessary to perform functional analysis of contractile cell types maintained on such arrays using a novel laser and photo-detector system. The representative data provided highlights the precision and reproducible nature of the analysis of contractile function possible using this system, as well as the wide range of studies to which such technology can be applied. Successful widespread adoption of this system could provide investigators with the means to perform rapid, low cost functional studies in vitro, leading to more accurate predictions of tissue performance, disease development and response to novel therapeutic treatment.
Bioengineering, Issue 92, cantilever, in vitro, contraction, skeletal muscle, NMJ, cardiomyocytes, functional
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
Play Button
Dried Blood Spots - Preparing and Processing for Use in Immunoassays and in Molecular Techniques
Authors: Nico Grüner, Oumaima Stambouli, R. Stefan Ross.
Institutions: University of Duisburg-Essen.
The idea of collecting blood on a paper card and subsequently using the dried blood spots (DBS) for diagnostic purposes originated a century ago. Since then, DBS testing for decades has remained predominantly focused on the diagnosis of infectious diseases especially in resource-limited settings or the systematic screening of newborns for inherited metabolic disorders and only recently have a variety of new and innovative DBS applications begun to emerge. For many years, pre-analytical variables were only inappropriately considered in the field of DBS testing and even today, with the exception of newborn screening, the entire pre-analytical phase, which comprises the preparation and processing of DBS for their final analysis has not been standardized. Given this background, a comprehensive step-by-step protocol, which covers al the essential phases, is proposed, i.e., collection of blood; preparation of blood spots; drying of blood spots; storage and transportation of DBS; elution of DBS, and finally analyses of DBS eluates. The effectiveness of this protocol was first evaluated with 1,762 coupled serum/DBS pairs for detecting markers of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus infections on an automated analytical platform. In a second step, the protocol was utilized during a pilot study, which was conducted on active drug users in the German cities of Berlin and Essen.
Molecular Biology, Issue 97, Dried blood spots, filter paper cards, specimen storage, infectious diseases, hepatitis B virus, hepatitis C virus, human immunodeficiency virus
Play Button
Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control
Authors: Zachary A. Crannell, Brittany Rohrman, Rebecca Richards-Kortum.
Institutions: Rice University.
It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.
Genetics, Issue 97, recombinase polymerase amplification, isothermal amplification, quantitative, diagnostic, HIV-1, viral load
Play Button
Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice
Authors: Nicolas Gaudenzio, Riccardo Sibilano, Philipp Starkl, Mindy Tsai, Stephen J. Galli, Laurent L. Reber.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the ‘mast cell knock-in’ approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Immunology, Issue 99, c-kit, stem cell factor, FcεRI, immunoglobulin E, mouse model, adoptive transfer, immunology, allergy
Play Button
Method for Obtaining Primary Ovarian Cancer Cells From Solid Specimens
Authors: Lee J. Pribyl, Kathleen A. Coughlin, Thanasak Sueblinvong, Kristin Shields, Yoshie Iizuka, Levi S. Downs, Rahel G. Ghebre, Martina Bazzaro.
Institutions: University of Minnesota, Maricopa Medical Center and St Josephs Hospital and Medical Center, University of Minnesota.
Reliable tools for investigating ovarian cancer initiation and progression are urgently needed. While the use of ovarian cancer cell lines remains a valuable tool for understanding ovarian cancer, their use has many limitations. These include the lack of heterogeneity and the plethora of genetic alterations associated with extended in vitro passaging. Here we describe a method that allows for rapid establishment of primary ovarian cancer cells form solid clinical specimens collected at the time of surgery. The method consists of subjecting clinical specimens to enzymatic digestion for 30 min. The isolated cell suspension is allowed to grow and can be used for downstream application including drug screening. The advantage of primary ovarian cancer cell lines over established ovarian cancer cell lines is that they are representative of the original specific clinical specimens they are derived from and can be derived from different sites whether primary or metastatic ovarian cancer.
Medicine, Issue 84, Neoplasms, Ovarian Cancer, Primary cell lines, Clinical Specimens, Downstream Applications, Targeted Therapies, Epithelial Cultures
Play Button
Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures
Authors: Rahul Pandey, Melissa Spannuth, Jacinta C. Conrad.
Institutions: University of Houston.
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.
Chemistry, Issue 87, confocal microscopy, particle tracking, colloids, suspensions, confinement, gelation, microfluidics, image correlation, dynamics, suspension flow
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Phase Contrast and Differential Interference Contrast (DIC) Microscopy
Authors: Victoria Centonze Frohlich.
Institutions: University of Texas Health Science Center at San Antonio (UTHSCSA).
Phase-contrast microscopy is often used to produce contrast for transparent, non light-absorbing, biological specimens. The technique was discovered by Zernike, in 1942, who received the Nobel prize for his achievement. DIC microscopy, introduced in the late 1960s, has been popular in biomedical research because it highlights edges of specimen structural detail, provides high-resolution optical sections of thick specimens including tissue cells, eggs, and embryos and does not suffer from the phase halos typical of phase-contrast images. This protocol highlights the principles and practical applications of these microscopy techniques.
Basic protocols, Issue 18, Current Protocols Wiley, Microscopy, Phase Contrast, Difference Interference Contrast
Play Button
Generation of Comprehensive Thoracic Oncology Database - Tool for Translational Research
Authors: Mosmi Surati, Matthew Robinson, Suvobroto Nandi, Leonardo Faoro, Carley Demchuk, Rajani Kanteti, Benjamin Ferguson, Tara Gangadhar, Thomas Hensing, Rifat Hasina, Aliya Husain, Mark Ferguson, Theodore Karrison, Ravi Salgia.
Institutions: University of Chicago, University of Chicago, Northshore University Health Systems, University of Chicago, University of Chicago, University of Chicago.
The Thoracic Oncology Program Database Project was created to serve as a comprehensive, verified, and accessible repository for well-annotated cancer specimens and clinical data to be available to researchers within the Thoracic Oncology Research Program. This database also captures a large volume of genomic and proteomic data obtained from various tumor tissue studies. A team of clinical and basic science researchers, a biostatistician, and a bioinformatics expert was convened to design the database. Variables of interest were clearly defined and their descriptions were written within a standard operating manual to ensure consistency of data annotation. Using a protocol for prospective tissue banking and another protocol for retrospective banking, tumor and normal tissue samples from patients consented to these protocols were collected. Clinical information such as demographics, cancer characterization, and treatment plans for these patients were abstracted and entered into an Access database. Proteomic and genomic data have been included in the database and have been linked to clinical information for patients described within the database. The data from each table were linked using the relationships function in Microsoft Access to allow the database manager to connect clinical and laboratory information during a query. The queried data can then be exported for statistical analysis and hypothesis generation.
Medicine, Issue 47, Database, Thoracic oncology, Bioinformatics, Biorepository, Microsoft Access, Proteomics, Genomics
Play Button
Detection of Infectious Virus from Field-collected Mosquitoes by Vero Cell Culture Assay
Authors: Philip M. Armstrong, Theodore G. Andreadis, Shannon L. Finan, John J. Shepard, Michael C. Thomas.
Institutions: The Connecticut Agricultural Experiment Station.
Mosquitoes transmit a number of distinct viruses including important human pathogens such as West Nile virus, dengue virus, and chickungunya virus. Many of these viruses have intensified in their endemic ranges and expanded to new territories, necessitating effective surveillance and control programs to respond to these threats. One strategy to monitor virus activity involves collecting large numbers of mosquitoes from endemic sites and testing them for viral infection. In this article, we describe how to handle, process, and screen field-collected mosquitoes for infectious virus by Vero cell culture assay. Mosquitoes are sorted by trap location and species, and grouped into pools containing ≤50 individuals. Pooled specimens are homogenized in buffered saline using a mixer-mill and the aqueous phase is inoculated onto confluent Vero cell cultures (Clone E6). Cell cultures are monitored for cytopathic effect from days 3-7 post-inoculation and any viruses grown in cell culture are identified by the appropriate diagnostic assays. By utilizing this approach, we have isolated 9 different viruses from mosquitoes collected in Connecticut, USA, and among these, 5 are known to cause human disease. Three of these viruses (West Nile virus, Potosi virus, and La Crosse virus) represent new records for North America or the New England region since 1999. The ability to detect a wide diversity of viruses is critical to monitoring both established and newly emerging viruses in the mosquito population.
Immunology, Issue 52, Mosquito-borne viruses, mosquitoes, cell culture, surveillance
Play Button
Diagnosing Pulmonary Tuberculosis with the Xpert MTB/RIF Test
Authors: Thomas Bodmer, Angelika Ströhle.
Institutions: University of Bern, MCL Laboratories Inc..
Tuberculosis (TB) due to Mycobacterium tuberculosis (MTB) remains a major public health issue: the infection affects up to one third of the world population1, and almost two million people are killed by TB each year.2 Universal access to high-quality, patient-centered treatment for all TB patients is emphasized by WHO's Stop TB Strategy.3 The rapid detection of MTB in respiratory specimens and drug therapy based on reliable drug resistance testing results are a prerequisite for the successful implementation of this strategy. However, in many areas of the world, TB diagnosis still relies on insensitive, poorly standardized sputum microscopy methods. Ineffective TB detection and the emergence and transmission of drug-resistant MTB strains increasingly jeopardize global TB control activities.2 Effective diagnosis of pulmonary TB requires the availability - on a global scale - of standardized, easy-to-use, and robust diagnostic tools that would allow the direct detection of both the MTB complex and resistance to key antibiotics, such as rifampicin (RIF). The latter result can serve as marker for multidrug-resistant MTB (MDR TB) and has been reported in > 95% of the MDR-TB isolates.4, 5 The rapid availability of reliable test results is likely to directly translate into sound patient management decisions that, ultimately, will cure the individual patient and break the chain of TB transmission in the community.2 Cepheid's (Sunnyvale, CA, U.S.A.) Xpert MTB/RIF assay6, 7 meets the demands outlined above in a remarkable manner. It is a nucleic-acids amplification test for 1) the detection of MTB complex DNA in sputum or concentrated sputum sediments; and 2) the detection of RIF resistance-associated mutations of the rpoB gene.8 It is designed for use with Cepheid's GeneXpert Dx System that integrates and automates sample processing, nucleic acid amplification, and detection of the target sequences using real-time PCR and reverse transcriptase PCR. The system consists of an instrument, personal computer, barcode scanner, and preloaded software for running tests and viewing the results.9 It employs single-use disposable Xpert MTB/RIF cartridges that hold PCR reagents and host the PCR process. Because the cartridges are self-contained, cross-contamination between samples is eliminated.6 Current nucleic acid amplification methods used to detect MTB are complex, labor-intensive, and technically demanding. The Xpert MTB/RIF assay has the potential to bring standardized, sensitive and very specific diagnostic testing for both TB and drug resistance to universal-access point-of-care settings3, provided that they will be able to afford it. In order to facilitate access, the Foundation for Innovative New Diagnostics (FIND) has negotiated significant price reductions. Current FIND-negotiated prices, along with the list of countries eligible for the discounts, are available on the web.10
Immunology, Issue 62, tuberculosis, drug resistance, rifampicin, rapid diagnosis, Xpert MTB/RIF test
Play Button
Isolation of Lymphocytes from Mouse Genital Tract Mucosa
Authors: Janina Jiang, Kathleen A. Kelly.
Institutions: University of California, Los Angeles , California NanoSystems.
Mucosal surfaces, including in the gastrointestinal, urogenital, and respiratory tracts, provide portals of entry for pathogens, such as viruses and bacteria 1. Mucosae are also inductive sites in the host to generate immunity against pathogens, such as the Peyers patches in the intestinal tract and the nasal-associated lymphoreticular tissue in the respiratory tract. This unique feature brings mucosal immunity as a crucial player of the host defense system. Many studies have been focused on gastrointestinal and respiratory mucosal sites. However, there has been little investigation of reproductive mucosal sites. The genital tract mucosa is the primary infection site for sexually transmitted diseases (STD), including bacterial and viral infections. STDs are one of the most critical health challenges facing the world today. Centers for Disease Control and Prevention estimates that there are 19 million new infectious every year in the United States. STDs cost the U.S. health care system $17 billion every year 2, and cost individuals even more in immediate and life-long health consequences. In order to confront this challenge, a greater understanding of reproductive mucosal immunity is needed and isolating lymphocytes is an essential component of these studies. Here, we present a method to reproducibly isolate lymphocytes from murine female genital tracts for immunological studies that can be modified for adaption to other species. The method described below is based on one mouse. 
Immunology, Issue 67, Mucosal immunity, sexually transmitted diseases, genital tract lymphocytes, lymphocyte isolation, flow cytometry, FACS
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Determination of Tolerable Fatty Acids and Cholera Toxin Concentrations Using Human Intestinal Epithelial Cells and BALB/c Mouse Macrophages
Authors: Farshad Tamari, Joanna Tychowski, Laura Lorentzen.
Institutions: Kingsborough Community College, University of Texas at Austin, Kean University.
The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections.
Infection, Issue 75, Medicine, Immunology, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Bioengineering, Bacterial Infections and Mycoses, Mucosal immunity, oleic acid, linoleic acid, linolenic acid, cholera toxin, cholera, fatty acids, tissue culture, MTT assay, mouse, animal model
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins
Authors: Savannah E. Sanchez, Daniel A. Cuevas, Jason E. Rostron, Tiffany Y. Liang, Cullen G. Pivaroff, Matthew R. Haynes, Jim Nulton, Ben Felts, Barbara A. Bailey, Peter Salamon, Robert A. Edwards, Alex B. Burgin, Anca M. Segall, Forest Rohwer.
Institutions: San Diego State University, San Diego State University, San Diego State University, San Diego State University, San Diego State University, Argonne National Laboratory, Broad Institute.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Immunology, Issue 100, phenomics, phage, viral metagenome, Multi-phenotype Assay Plates (MAPs), continuous culture, metabolomics
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.