JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Cytomegalovirus and Epstein-Barr virus in breast cancer.
PUBLISHED: 02-28-2015
Findings of polymerase chain reaction (PCR) studies of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and breast cancer vary, making it difficult to determine whether either, both, or neither virus is causally associated with breast cancer. We investigated CMV and EBV in paired samples of breast cancer and normal breast tissue from 70 women using quantitative PCR. A serum sample from each woman was tested for CMV and EBV IgG. To place our results in context, we reviewed the existing literature and performed a meta-analysis of our results together with previous PCR studies of EBV, CMV, and breast cancer. Of the serology samples, 67 of 70 (96%) were EBV IgG positive and 49 of 70 (70%) were CMV IgG positive. QPCR detected EBV in 24 (34%) of the tumour and 9 (13%) of the paired normal specimens and CMV in 0 (0%) of the tumour and 2 (3%) of the paired normal specimens. Our findings, together with earlier results summarised in the meta-analysis, suggest several possibilities: variable findings may be due to limitations of molecular analyses; 'hit and run' oncogenesis may lead to inconsistent results; one or both viruses has a role at a later stage in breast cancer development; infection with multiple viruses increases breast cancer risk; or neither virus has a role. Future studies should focus on ways to investigate these possibilities, and should include comparisons of breast cancer tissue samples with appropriate normal tissue samples.
Authors: Sonia de Assis, Anni Warri, M. Idalia Cruz, Leena Hilakivi-Clarke.
Published: 10-16-2010
Studies in rodent models of breast cancer show that exposures to dietary/hormonal factors during the in utero and pubertal periods, when the mammary gland undergoes extensive modeling and re-modeling, alter susceptibility to carcinogen-induced mammary tumors. Similar findings have been described in humans: for example, high birthweight increases later risk of developing breast cancer, and dietary intake of soy during childhood decreases breast cancer risk. It is thought that these prenatal and postnatal dietary modifications induce persistent morphological changes in the mammary gland that in turn modify breast cancer risk later in life. These morphological changes likely reflect epigenetic modifications, such as changes in DNA methylation, histones and miRNA expression that then affect gene transcription . In this article we describe how changes in mammary gland morphology can predict mammary cancer risk in rats. Our protocol specifically describes how to dissect and remove the rat abdominal mammary gland and how to prepare mammary gland whole mounts. It also describes how to analyze mammary gland morphology according to three end-points (number of terminal end buds, epithelial elongation and differentiation) and to use the data to predict risk of developing mammary cancer.
20 Related JoVE Articles!
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
qPCR Is a Sensitive and Rapid Method for Detection of Cytomegaloviral DNA in Formalin-fixed, Paraffin-embedded Biopsy Tissue
Authors: Morgan H. McCoy, Kristin Post, Joyashree D. Sen, Hsim Y. Chang, Zijin Zhao, Rong Fan, Shaoxiong Chen, Diane Leland, Liang Cheng, Jingmei Lin.
Institutions: Indiana University School of Medicine, Indiana University Health.
It is crucial to identify cytomegalovirus (CMV) infection in the gastrointestinal (GI) tract of immunosuppressed patients, given their greater risk for developing severe infection. Many laboratory methods for the detection of CMV infection have been developed, including serology, viral culture, and molecular methods. Often, these methods reflect systemic involvement with CMV and do not specifically identify local tissue involvement. Therefore, detection of CMV infection in the GI tract is frequently done by traditional histology of biopsy tissue. Hematoxylin and eosin (H&E) staining in conjunction with immunohistochemistry (IHC) have remained the mainstays of examining these biopsies. H&E and IHC sometimes result in atypical (equivocal) staining patterns, making interpretation difficult. It was shown that quantitative polymerase chain reaction (qPCR) for CMV can successfully be performed on formalin-fixed, paraffin-embedded (FFPE) biopsy tissue for very high sensitivity and specificity. The goal of this protocol is to demonstrate how to perform qPCR testing for the detection of CMV in FFPE biopsy tissue in a clinical laboratory setting. This method is likely to be of great benefit for patients in cases of equivocal staining for CMV in GI biopsies.
Genetics, Issue 89, qPCR, cytomegalovirus, CMV, biopsy, real-time PCR, gastrointestinal, formalin-fixed, paraffin-embedded tissue
Play Button
Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors
Authors: Jesse J. Hubbard, Spencer K. Sullivan, Jason A. Mills, Brian J. Hayes, Beverly J. Torok-Storb, Aravind Ramakrishnan.
Institutions: Fred Hutchinson Cancer Research Center, The Children's Hospital of Philadelphia, The Children's Hospital of Philadelphia.
This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.
Cellular Biology, Issue 92, Induced pluripotent stem cells, iPSC, iPSC generation, human, HDAC inhibitors, histone deacetylase inhibitors, reprogramming, episomes, integration-free
Play Button
Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
Authors: Noam Nissan, Edna Furman-Haran, Myra Feinberg-Shapiro, Dov Grobgeld, Erez Eyal, Tania Zehavi, Hadassa Degani.
Institutions: Weizmann Institute of Science, Weizmann Institute of Science, Meir Medical Center, Meir Medical Center.
Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.
Medicine, Issue 94, Magnetic Resonance Imaging, breast, breast cancer, diagnosis, water diffusion, diffusion tensor imaging
Play Button
Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs
Authors: Wilson Wong, Ryan Farr, Mugdha Joglekar, Andrzej Januszewski, Anandwardhan Hardikar.
Institutions: The University of Sydney, The University of Sydney.
Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput.
Molecular Biology, Issue 98, microRNA, ncRNA, probe-based assays, high-throughput PCR, Nanofluidics / Open Arrays, reverse-transcription, pre-amplification, qPCR
Play Button
Primary Tumor and MEF Cell Isolation to Study Lung Metastasis
Authors: Shengli Dong, Mazvita Maziveyi, Suresh K. Alahari.
Institutions: Louisiana State University Health Sciences Center.
In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.
Medicine, Issue 99, Tumor, breast, lung, primary, MEF, embryo, fibroblasts, cancer, cell, mouse
Play Button
Methods for Culturing Human Femur Tissue Explants to Study Breast Cancer Cell Colonization of the Metastatic Niche
Authors: Zachary S. Templeton, Michael H. Bachmann, Rajiv V. Alluri, William J. Maloney, Christopher H. Contag, Bonnie L. King.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.
Medicine, Issue 97, Metastatic niche, bone microenvironment, breast cancer metastasis, human bone, osteotropism, ex vivo model, explant culture system, bioluminescence imaging
Play Button
Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells
Authors: Gisela Nogales-Gadea, Abhishek Saxena, Carolin Hoffmann, Judith Hounjet, Daniëlle Coenen, Peter Molenaar, Mario Losen, Pilar Martinez-Martinez.
Institutions: Maastricht University, Institut d'Investigació Germans Trias i Pujol.
Finding new methods for generating human monoclonal antibodies is an active research field that is important for both basic and applied sciences, including the development of immunotherapeutics. However, the techniques to identify and produce such antibodies tend to be arduous and sometimes the heavy and light chain pair of the antibodies are dissociated. Here, we describe a relatively simple, straightforward protocol to produce human recombinant monoclonal antibodies from human peripheral blood mononuclear cells using immortalization with Epstein-Barr Virus (EBV) and Toll-like receptor 9 activation. With an adequate staining, B cells producing antibodies can be isolated for subsequent immortalization and clonal expansion. The antibody transcripts produced by the immortalized B cell clones can be amplified by PCR, sequenced as corresponding heavy and light chain pairs and cloned into immunoglobulin expression vectors. The antibodies obtained with this technique can be powerful tools to study relevant human immune responses, including autoimmunity, and create the basis for new therapeutics.
Immunology, Issue 100, human monoclonal antibodies, B cells, Epstein-Barr virus, Toll-like receptor 9, autoimmune diseases
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant
Authors: Ulrike Gerdemann, Juan F. Vera, Cliona M. Rooney, Ann M. Leen.
Institutions: Baylor College of Medicine.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.
Immunology, Issue 51, T cells, immunotherapy, viral infections, nucleofection, plasmids, G-Rex culture device
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
Play Button
Long-term Culture of Human Breast Cancer Specimens and Their Analysis Using Optical Projection Tomography
Authors: Alexander D. Leeper, Joanne Farrell, J. Michael Dixon, Sarah E. Wedden, David J. Harrison, Elad Katz.
Institutions: University of Edinburgh, MRC Technology.
Breast cancer is a leading cause of mortality in the Western world. It is well established that the spread of breast cancer, first locally and later distally, is a major factor in patient prognosis. Experimental systems of breast cancer rely on cell lines usually derived from primary tumours or pleural effusions. Two major obstacles hinder this research: (i) some known sub-types of breast cancers (notably poor prognosis luminal B tumours) are not represented within current line collections; (ii) the influence of the tumour microenvironment is not usually taken into account. We demonstrate a technique to culture primary breast cancer specimens of all sub-types. This is achieved by using three-dimensional (3D) culture system in which small pieces of tumour are embedded in soft rat collagen I cushions. Within 2-3 weeks, the tumour cells spread into the collagen and form various structures similar to those observed in human tumours1. Viable adipocytes, epithelial cells and fibroblasts within the original core were evident on histology. Malignant epithelial cells with squamoid morphology were demonstrated invading into the surrounding collagen. Nuclear pleomorphism was evident within these cells, along with mitotic figures and apoptotic bodies. We have employed Optical Projection Tomography (OPT), a 3D imaging technology, in order to quantify the extent of tumour spread in culture. We have used OPT to measure the bulk volume of the tumour culture, a parameter routinely measured during the neo-adjuvant treatment of breast cancer patients to assess response to drug therapy. Here, we present an opportunity to culture human breast tumours without sub-type bias and quantify the spread of those ex vivo. This method could be used in the future to quantify drug sensitivity in original tumour. This may provide a more predictive model than currently used cell lines.
Medicine, Issue 53, Breast cancer, Optical Projection Tomography, Imaging, Three-dimensional, computer assisted, Tumour microenvironment
Play Button
Experimental Generation of Carcinoma-Associated Fibroblasts (CAFs) from Human Mammary Fibroblasts
Authors: Urszula M. Polanska, Ahmet Acar, Akira Orimo.
Institutions: University of Manchester, Juntendo University.
Carcinomas are complex tissues comprised of neoplastic cells and a non-cancerous compartment referred to as the 'stroma'. The stroma consists of extracellular matrix (ECM) and a variety of mesenchymal cells, including fibroblasts, myofibroblasts, endothelial cells, pericytes and leukocytes 1-3. The tumour-associated stroma is responsive to substantial paracrine signals released by neighbouring carcinoma cells. During the disease process, the stroma often becomes populated by carcinoma-associated fibroblasts (CAFs) including large numbers of myofibroblasts. These cells have previously been extracted from many different types of human carcinomas for their in vitro culture. A subpopulation of CAFs is distinguishable through their up-regulation of α-smooth muscle actin (α-SMA) expression4,5. These cells are a hallmark of 'activated fibroblasts' that share similar properties with myofibroblasts commonly observed in injured and fibrotic tissues 6. The presence of this myofibroblastic CAF subset is highly related to high-grade malignancies and associated with poor prognoses in patients. Many laboratories, including our own, have shown that CAFs, when injected with carcinoma cells into immunodeficient mice, are capable of substantially promoting tumourigenesis 7-10. CAFs prepared from carcinoma patients, however, frequently undergo senescence during propagation in culture limiting the extensiveness of their use throughout ongoing experimentation. To overcome this difficulty, we developed a novel technique to experimentally generate immortalised human mammary CAF cell lines (exp-CAFs) from human mammary fibroblasts, using a coimplantation breast tumour xenograft model. In order to generate exp-CAFs, parental human mammary fibroblasts, obtained from the reduction mammoplasty tissue, were first immortalised with hTERT, the catalytic subunit of the telomerase holoenzyme, and engineered to express GFP and a puromycin resistance gene. These cells were coimplanted with MCF-7 human breast carcinoma cells expressing an activated ras oncogene (MCF-7-ras cells) into a mouse xenograft. After a period of incubation in vivo, the initially injected human mammary fibroblasts were extracted from the tumour xenografts on the basis of their puromycin resistance 11. We observed that the resident human mammary fibroblasts have differentiated, adopting a myofibroblastic phenotype and acquired tumour-promoting properties during the course of tumour progression. Importantly, these cells, defined as exp-CAFs, closely mimic the tumour-promoting myofibroblastic phenotype of CAFs isolated from breast carcinomas dissected from patients. Our tumour xenograft-derived exp-CAFs therefore provide an effective model to study the biology of CAFs in human breast carcinomas. The described protocol may also be extended for generating and characterising various CAF populations derived from other types of human carcinomas.
Medicine, Issue 56, cancer, stromal myofibroblasts, experimentally generated carcinoma-associated fibroblasts (exp-CAFs), fibroblast, human mammary carcinomas, tumour xenografts
Play Button
In vivo Dual Substrate Bioluminescent Imaging
Authors: Michael K. Wendt, Joseph Molter, Christopher A. Flask, William P. Schiemann.
Institutions: Case Western Reserve University .
Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies 1-3. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays 4. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor 4-6. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells 7-9. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis.
Medicine, Issue 56, firefly luciferase, Renilla Luciferase, breast cancer, metastasis, Smad
Play Button
Establishment of Epstein-Barr Virus Growth-transformed Lymphoblastoid Cell Lines
Authors: Joyce Hui-Yuen, Shane McAllister, Siva Koganti, Erik Hill, Sumita Bhaduri-McIntosh.
Institutions: State University of New York at Stony Brook, State University of New York at Stony Brook, State University of New York at Stony Brook, State University of New York at Stony Brook.
Infection of B cells with Epstein-Barr virus (EBV) leads to proliferation and subsequent immortalization, resulting in establishment of lymphoblastoid cell lines (LCL) in vitro. Since LCL are latently infected with EBV, they provide a model system to investigate EBV latency and virus-driven B cell proliferation and tumorigenesis1. LCL have been used to present antigens in a variety of immunologic assays2, 3. In addition, LCL can be used to generate human monoclonal antibodies4, 5 and provide a potentially unlimited source when access to primary biologic materials is limited6, 7. A variety of methods have been described to generate LCL. Earlier methods have included the use of mitogens such as phytohemagglutinin, lipopolysaccharide8, and pokeweed mitogen9 to increase the efficiency of EBV-mediated immortalization. More recently, others have used immunosuppressive agents such as cyclosporin A to inhibit T cell-mediated killing of infected B cells7, 10-12. The considerable length of time from EBV infection to establishment of cell lines drives the requirement for quicker and more reliable methods for EBV-driven B cell growth transformation. Using a combination of high titer EBV and an immunosuppressive agent, we are able to consistently infect, transform, and generate LCL from B cells in peripheral blood. This method uses a small amount of peripheral blood mononuclear cells that are infected in vitroclusters of cells can be demonstrated. The presence of CD23 with EBV in the presence of FK506, a T cell immunosuppressant. Traditionally, outgrowth of proliferating B cells is monitored by visualization of microscopic clusters of cells about a week after infection with EBV. Clumps of LCL can be seen by the naked eye after several weeks. We describe an assay to determine early if EBV-mediated growth transformation is successful even before microscopic clusters of cells can be demonstrated. The presence of CD23hiCD58+ cells observed as early as three days post-infection indicates a successful outcome.
Immunology, Issue 57, Epstein-Barr virus, EBV, lymphoblastoid cell lines, LCL, transformation, immortalization, PBMC
Play Button
Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus
Authors: Patrick J. Hanley, Sharon Lam, Elizabeth J. Shpall, Catherine M. Bollard.
Institutions: Baylor College of Medicine , Baylor College of Medicine , University of Texas M.D. Anderson Cancer Center, Baylor College of Medicine , Baylor College of Medicine .
Virus infections after stem cell transplantation are among the most common causes of death, especially after cord blood (CB) transplantation (CBT) where the CB does not contain appreciable numbers of virus-experienced T cells which can protect the recipient from infection.1-4 We and others have shown that virus-specific CTL generated from seropositive donors and infused to the recipient are safe and protective.5-8 However, until recently, virus-specific T cells could not be generated from cord blood, likely due to the absence of virus-specific memory T cells. In an effort to better mimic the in vivo priming conditions of naïve T cells, we established a method that used CB-derived dendritic cells (DC) transduced with an adenoviral vector (Ad5f35pp65) containing the immunodominant CMV antigen pp65, hence driving T cell specificity towards CMV and adenovirus.9 At initiation, we use these matured DCs as well as CB-derived T cells in the presence of the cytokines IL-7, IL-12, and IL-15.10 At the second stimulation we used EBV-transformed B cells, or EBV-LCL, which express both latent and lytic EBV antigens. Ad5f35pp65-transduced EBV-LCL are used to stimulate the T cells in the presence of IL-15 at the second stimulation. Subsequent stimulations use Ad5f35pp65-transduced EBV-LCL and IL-2. From 50x106 CB mononuclear cells we are able to generate upwards of 150 x 106 virus-specific T cells that lyse antigen-pulsed targets and release cytokines in response to antigenic stimulation.11 These cells were manufactured in a GMP-compliant manner using only the 20% fraction of a fractionated cord blood unit and have been translated for clinical use.
Immunology, Issue 63, Cytotoxic T Lymphocytes (CTL), virus, stem cell transplantation, cord blood, naïve T cells, medicine
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.