JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.
PUBLISHED: 02-28-2015
The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ? 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 ?L serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.
Authors: Aubin Penna, Michael Cahalan.
Published: 08-22-2007
Western Blotting (or immunoblotting) is a standard laboratory procedure allowing investigators to verify the expression of a protein, determine the relative amount of the protein present in different samples, and analyze the results of co-immunoprecipitation experiments. In this method, a target protein is detected with a specific primary antibody in a given sample of tissue homogenate or extract. Protein separation according to molecular weight is achieved using denaturing SDS-PAGE. After transfer to a membrane, the target protein is probed with a specific primary antibody and detected by chemiluminescence. Since its first description, the western-blotting technique has undergone several improvements, including pre-cast gels and user-friendly equipment. In our laboratory, we have chosen to use the commercially available NuPAGE electrophoresis system from Invitrogen. It is an innovative neutral pH, discontinuous SDS-PAGE, pre-cast mini-gel system. This system presents several advantages over the traditional Laemmli technique including: i) a longer shelf life of the pre-cast gels ranging from 8 months to 1 year; ii) a broad separation range of molecular weights from 1 to 400 kDa depending of the type of gel used; and iii) greater versatility (range of acrylamide percentage, the type of gel, and the ionic composition of the running buffer). The procedure described in this video article utilizes the Bis-Tris discontinuous buffer system with 4-12% Bis-Tris gradient gels and MES running buffer, as an illustration of how to perform a western-blot using the Invitrogen NuPAGE electrophoresis system. In our laboratory, we have obtained good and reproducible results for various biochemical applications using this western-blotting method.
23 Related JoVE Articles!
Play Button
Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting
Authors: Francisco-Jose Fernandez-Gomez, Fanny Jumeau, Maxime Derisbourg, Sylvie Burnouf, Hélène Tran, Sabiha Eddarkaoui, Hélène Obriot, Virginie Dutoit-Lefevre, Vincent Deramecourt, Valérie Mitchell, Didier Lefranc, Malika Hamdane, David Blum, Luc Buée, Valérie Buée-Scherrer, Nicolas Sergeant.
Institutions: Inserm UMR 837, CHRU-Lille, Faculté de Médecine - Pôle Recherche, CHRU-Lille.
Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets.
Neuroscience, Issue 86, proteomics, neurodegeneration, 2DE, human and mice brain tissue, fluorescence, immunoblotting. Abbreviations: 2DE (two-dimensional gel electrophoresis), 2D-DIGE (two-dimensional fluorescence difference gel electrophoresis), mini-2DE (mini 2DE immunoblotting),IPG (Immobilized pH Gradients), IEF (isoelectrofocusing), AD (Alzheimer´s disease)
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (, our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
Play Button
Scalable High Throughput Selection From Phage-displayed Synthetic Antibody Libraries
Authors: Shane Miersch, Zhijian Li, Rachel Hanna, Megan E. McLaughlin, Michael Hornsby, Tet Matsuguchi, Marcin Paduch, Annika Sääf, Jim Wells, Shohei Koide, Anthony Kossiakoff, Sachdev S. Sidhu.
Institutions: The Recombinant Antibody Network, University of Toronto, University of California, San Francisco at Mission Bay, The University of Chicago.
The demand for antibodies that fulfill the needs of both basic and clinical research applications is high and will dramatically increase in the future. However, it is apparent that traditional monoclonal technologies are not alone up to this task. This has led to the development of alternate methods to satisfy the demand for high quality and renewable affinity reagents to all accessible elements of the proteome. Toward this end, high throughput methods for conducting selections from phage-displayed synthetic antibody libraries have been devised for applications involving diverse antigens and optimized for rapid throughput and success. Herein, a protocol is described in detail that illustrates with video demonstration the parallel selection of Fab-phage clones from high diversity libraries against hundreds of targets using either a manual 96 channel liquid handler or automated robotics system. Using this protocol, a single user can generate hundreds of antigens, select antibodies to them in parallel and validate antibody binding within 6-8 weeks. Highlighted are: i) a viable antigen format, ii) pre-selection antigen characterization, iii) critical steps that influence the selection of specific and high affinity clones, and iv) ways of monitoring selection effectiveness and early stage antibody clone characterization. With this approach, we have obtained synthetic antibody fragments (Fabs) to many target classes including single-pass membrane receptors, secreted protein hormones, and multi-domain intracellular proteins. These fragments are readily converted to full-length antibodies and have been validated to exhibit high affinity and specificity. Further, they have been demonstrated to be functional in a variety of standard immunoassays including Western blotting, ELISA, cellular immunofluorescence, immunoprecipitation and related assays. This methodology will accelerate antibody discovery and ultimately bring us closer to realizing the goal of generating renewable, high quality antibodies to the proteome.
Immunology, Issue 95, Bacteria, Viruses, Amino Acids, Peptides, and Proteins, Nucleic Acids, Nucleotides, and Nucleosides, Life Sciences (General), phage display, synthetic antibodies, high throughput, antibody selection, scalable methodology
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins
Authors: Ruben Magni, Benjamin H. Espina, Lance A. Liotta, Alessandra Luchini, Virginia Espina.
Institutions: George Mason University, Ceres Nanosciences.
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Bioengineering, Issue 90, biomarker, hydrogel, low abundance, mass spectrometry, nanoparticle, plasma, protein, urine
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
Play Button
Enhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution
Authors: Francine E. Garrett-Bakelman, Caroline K. Sheridan, Thadeous J. Kacmarczyk, Jennifer Ishii, Doron Betel, Alicia Alonso, Christopher E. Mason, Maria E. Figueroa, Ari M. Melnick.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College, Weill Cornell Medical College, University of Michigan.
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.
Genetics, Issue 96, Epigenetics, bisulfite sequencing, DNA methylation, genomic DNA, 5-methylcytosine, high-throughput
Play Button
Quantitative Mass Spectrometric Profiling of Cancer-cell Proteomes Derived From Liquid and Solid Tumors
Authors: Hanibal Bohnenberger, Philipp Ströbel, Sebastian Mohr, Jasmin Corso, Tobias Berg, Henning Urlaub, Christof Lenz, Hubert Serve, Thomas Oellerich.
Institutions: University Medical Center, Göttingen, Goethe University of Frankfurt, Max Planck Institute for Biophysical Chemistry, University Medical Center, Göttingen, German Cancer Consortium, German Cancer Research Center.
In-depth analyses of cancer cell proteomes are needed to elucidate oncogenic pathomechanisms, as well as to identify potential drug targets and diagnostic biomarkers. However, methods for quantitative proteomic characterization of patient-derived tumors and in particular their cellular subpopulations are largely lacking. Here we describe an experimental set-up that allows quantitative analysis of proteomes of cancer cell subpopulations derived from either liquid or solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry followed by bioinformatic data analysis. To enrich specific cellular subsets, liquid tumors are first immunophenotyped by flow cytometry followed by FACS-sorting; for solid tumors, laser-capture microdissection is used to purify specific cellular subpopulations. In a second step, proteins are extracted from the purified cells and subsequently combined with a tumor-specific, SILAC-labeled spike-in standard that enables protein quantification. The resulting protein mixture is subjected to either gel electrophoresis or Filter Aided Sample Preparation (FASP) followed by tryptic digestion. Finally, tryptic peptides are analyzed using a hybrid quadrupole-orbitrap mass spectrometer, and the data obtained are processed with bioinformatic software suites including MaxQuant. By means of the workflow presented here, up to 8,000 proteins can be identified and quantified in patient-derived samples, and the resulting protein expression profiles can be compared among patients to identify diagnostic proteomic signatures or potential drug targets.
Medicine, Issue 96, Proteomics, solid tumors, leukemia, formalin-fixed and paraffin-embedded tissue (FFPE), laser-capture microdissection, spike-in SILAC, quantitative mass spectrometry
Play Button
Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq
Authors: George E. Gentsch, Ilya Patrushev, James C. Smith.
Institutions: MRC National Institute for Medical Research.
The recruitment of chromatin regulators and the assignment of chromatin states to specific genomic loci are pivotal to cell fate decisions and tissue and organ formation during development. Determining the locations and levels of such chromatin features in vivo will provide valuable information about the spatio-temporal regulation of genomic elements, and will support aspirations to mimic embryonic tissue development in vitro. The most commonly used method for genome-wide and high-resolution profiling is chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). This protocol outlines how yolk-rich embryos such as those of the frog Xenopus can be processed for ChIP-Seq experiments, and it offers simple command lines for post-sequencing analysis. Because of the high efficiency with which the protocol extracts nuclei from formaldehyde-fixed tissue, the method allows easy upscaling to obtain enough ChIP material for genome-wide profiling. Our protocol has been used successfully to map various DNA-binding proteins such as transcription factors, signaling mediators, components of the transcription machinery, chromatin modifiers and post-translational histone modifications, and for this to be done at various stages of embryogenesis. Lastly, this protocol should be widely applicable to other model and non-model organisms as more and more genome assemblies become available.
Developmental Biology, Issue 96, Chromatin immunoprecipitation, next-generation sequencing, ChIP-Seq, developmental biology, Xenopus embryos, cross-linking, transcription factor, post-sequencing analysis, DNA occupancy, metagene, binding motif, GO term
Play Button
A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay
Authors: Jennifer A. Martin, Joshua E. Smith, Mercedes Warren, Jorge L. Chávez, Joshua A. Hagen, Nancy Kelley-Loughnane.
Institutions: Wright-Patterson Air Force Base, The Henry M. Jackson Foundation, UES, Inc..
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.
Molecular Biology, Issue 96, Aptamer, structure-switching, SELEX, small molecule, cortisol, next generation sequencing, gold nanoparticle, assay
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
Play Button
Bottom-up and Shotgun Proteomics to Identify a Comprehensive Cochlear Proteome
Authors: Lancia N.F. Darville, Bernd H.A. Sokolowski.
Institutions: University of South Florida.
Proteomics is a commonly used approach that can provide insights into complex biological systems. The cochlear sensory epithelium contains receptors that transduce the mechanical energy of sound into an electro-chemical energy processed by the peripheral and central nervous systems. Several proteomic techniques have been developed to study the cochlear inner ear, such as two-dimensional difference gel electrophoresis (2D-DIGE), antibody microarray, and mass spectrometry (MS). MS is the most comprehensive and versatile tool in proteomics and in conjunction with separation methods can provide an in-depth proteome of biological samples. Separation methods combined with MS has the ability to enrich protein samples, detect low molecular weight and hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. Different digestion strategies can be applied to whole lysate or to fractionated protein lysate to enhance peptide and protein sequence coverage. Utilization of different separation techniques, including strong cation exchange (SCX), reversed-phase (RP), and gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) can be applied to reduce sample complexity prior to MS analysis for protein identification.
Biochemistry, Issue 85, Cochlear, chromatography, LC-MS/MS, mass spectrometry, Proteomics, sensory epithelium
Play Button
Electrophoretic Separation of Proteins
Authors: Bulbul Chakavarti, Deb Chakavarti.
Institutions: Keck Graduate Institute of Applied Life Sciences.
Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. The combination of pore size and protein charge, size, and shape determines the migration rate of the protein. In this unit, the standard Laemmli method is described for discontinuous gel electrophoresis under denaturing conditions, i.e., in the presence of sodium dodecyl sulfate (SDS).
Basic Protocols, Issue 16, Current Protocols Wiley, Electrophoresis, Biochemistry, Protein Separage, Polyacrylamide Gel Electrophoresis, PAGE
Play Button
Immunoblot Analysis
Authors: Sean Gallagher, Deb Chakavarti.
Institutions: UVP, LLC, Keck Graduate Institute of Applied Life Sciences.
Immunoblotting (western blotting) is a rapid and sensitive assay for the detection and characterization of proteins that works by exploiting the specificity inherent in antigen-antibody recognition. It involves the solubilization and electrophoretic separation of proteins, glycoproteins, or lipopolysaccharides by gel electrophoresis, followed by quantitative transfer and irreversible binding to nitrocellulose, PVDF, or nylon. The immunoblotting technique has been useful in identifying specific antigens recognized by polyclonal or monoclonal antibodies and is highly sensitive (1 ng of antigen can be detected). This unit provides protocols for protein separation, blotting proteins onto membranes, immunoprobing, and visualization using chromogenic or chemiluminescent substrates.
Basic Protocols, Issue 16, Current Protocols Wiley, Immunoblotting, Biochemistry, Western Blotting, chromogenic substrates, chemiluminescent substrates, protein detection.
Play Button
Staining Proteins in Gels
Authors: Sean Gallagher, Deb Chakavarti.
Institutions: UVP, LLC, Keck Graduate Institute of Applied Life Sciences.
Following separation by electrophoretic methods, proteins in a gel can be detected by several staining methods. This unit describes protocols for detecting proteins by four popular methods. Coomassie blue staining is an easy and rapid method. Silver staining, while more time consuming, is considerably more sensitive and can thus be used to detect smaller amounts of protein. Fluorescent staining is a popular alternative to traditional staining procedures, mainly because it is more sensitive than Coomassie staining, and is often as sensitive as silver staining. Staining of proteins with SYPRO Orange and SYPRO Ruby are also demonstrated here.
Basic Protocols, Issue 17, Current Protocols Wiley, Coomassie Blue Staining, Silver Staining, SYPROruby, SYPROorange, Protein Detection
Play Button
Selective Labelling of Cell-surface Proteins using CyDye DIGE Fluor Minimal Dyes
Authors: Asa Hagner-McWhirter, Maria Winkvist, Stephanie Bourin, Rita Marouga.
Institutions: GE Healthcare Bio-Sciences AB.
Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.
Biochemistry, Issue 21, Cell surface protein labelling, Ettan DIGE, CyDye DIGE Fluor minimal dyes, cell surface proteins, receptors, fluorescence, 2-D electrophoresis
Play Button
Staining of Proteins in Gels with Coomassie G-250 without Organic Solvent and Acetic Acid
Authors: Ann-Marie Lawrence, Hüseyin Besir.
Institutions: EMBL Heidelberg.
In classical protein staining protocols using Coomassie Brilliant Blue (CBB), solutions with high contents of toxic and flammable organic solvents (Methanol, Ethanol or 2-Propanol) and acetic acid are used for fixation, staining and destaining of proteins in a gel after SDS-PAGE. To speed up the procedure, heating the staining solution in the microwave oven for a short time is frequently used. This usually results in evaporation of toxic or hazardous Methanol, Ethanol or 2-Propanol and a strong smell of acetic acid in the lab which should be avoided due to safety considerations. In a protocol originally published in two patent applications by E.M. Wondrak (US2001046709 (A1), US6319720 (B1)), an alternative composition of the staining solution is described in which no organic solvent or acid is used. The CBB is dissolved in bidistilled water (60-80mg of CBB G-250 per liter) and 35 mM HCl is added as the only other compound in the staining solution. The CBB staning of the gel is done after SDS-PAGE and thorough washing of the gel in bidistilled water. By heating the gel during the washing and staining steps, the process can be finished faster and no toxic or hazardous compunds are evaporating. The staining of proteins occurs already within 1 minute after heating the gel in staining solution and is fully developed after 15-30 min with a slightly blue background that is destained completely by prolonged washing of the stained gel in bidistilled water, without affecting the stained protein bands.
Basic Protocols, Issue 30, SDS-PAGE, Coomassie staining, Protein detection, Protein staining
Play Button
Using the GELFREE 8100 Fractionation System for Molecular Weight-Based Fractionation with Liquid Phase Recovery
Authors: Chuck Witkowski, Jay Harkins.
Institutions: Protein Discovery, Inc..
The GELFREE 8100 Fractionation System is a novel protein fractionation system designed to maximize protein recovery during molecular weight based fractionation. The system is comprised of single-use, 8-sample capacity cartridges and a benchtop GELFREE Fractionation Instrument. During separation, a constant voltage is applied between the anode and cathode reservoirs, and each protein mixture is electrophoretically driven from a loading chamber into a specially designed gel column gel. Proteins are concentrated into a tight band in a stacking gel, and separated based on their respective electrophoretic mobilities in a resolving gel. As proteins elute from the column, they are trapped and concentrated in liquid phase in the collection chamber, free of the gel. The instrument is then paused at specific time intervals, and fractions are collected using a pipette. This process is repeated until all desired fractions have been collected. If fewer than 8 samples are run on a cartridge, any unused chambers can be used in subsequent separations. This novel technology facilitates the quick and simple separation of up to 8 complex protein mixtures simultaneously, and offers several advantages when compared to previously available fractionation methods. This system is capable of fractionating up to 1mg of total protein per channel, for a total of 8mg per cartridge. Intact proteins over a broad mass range are separated on the basis of molecular weight, retaining important physiochemical properties of the analyte. The liquid phase entrapment provides for high recovery while eliminating the need for band or spot cutting, making the fractionation process highly reproducible1.
Basic Protocols, Cellular Biology, Issue 34, GELFREE, SDS PAGE, gel electrophoresis, protein fractionation, separation, electrophoresis, proteomics, mass spectrometry
Play Button
Western Blotting: Sample Preparation to Detection
Authors: Anna Eslami, Jesse Lujan.
Institutions: EMD Chemicals Inc..
Western blotting is an analytical technique used to detect specific proteins in a given sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D structure of the protein (native/ non-denaturing conditions). The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein.
Basic Protocols, Issue 44, western blot, SDS-PAGE, electrophoresis, protein transfer, immunoblot, protein separation, PVDF, nitrocellulose, ECL
Play Button
Pouring and Running a Protein Gel by reusing Commercial Cassettes
Authors: Alexander C. Hwang, Paris H. Grey, Katrina Cuddy, David G. Oppenheimer.
Institutions: University of Florida , University of Florida , University of Florida .
The evaluation of proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is a common technique used by biochemistry and molecular biology researchers1-4. For laboratories that perform daily analyses of proteins, the cost of commercially available polyacrylamide gels (˜$10/gel) can be considerable over time. To mitigate this cost, some researchers prepare their own polyacrylamide gels. Traditional methods of pouring these gels typically utilize specialized equipment and glass gel plates that can be expensive and preclude pouring many gels and storing them for future use. Furthermore, handling of glass plates during cleaning or gel pouring can result in accidental breakage creating a safety hazard, which may preclude their use in undergraduate laboratory classes. Our protocol demonstrates how to pour multiple protein gels simultaneously by recycling Invitrogen Nupage Novex minigel cassettes, and inexpensive materials purchased at a home improvement store. This economical and streamlined method includes a way to store the gels at 4°C for a few weeks. By re-using the plastic gel cassettes from commercially available gels, labs that run frequent protein gels can save significant costs and help the environment. In addition, plastic gel cassettes are extremely resistant to breakage, which makes them ideal for undergraduate laboratory classrooms.
Basic Protocols, Issue 60, Molecular Biology, minigel, cassettes, protein, gel, electrophoresis
Play Button
Low Molecular Weight Protein Enrichment on Mesoporous Silica Thin Films for Biomarker Discovery
Authors: Jia Fan, James W. Gallagher, Hung-Jen Wu, Matthew G. Landry, Jason Sakamoto, Mauro Ferrari, Ye Hu.
Institutions: The Methodist Hospital Research Institute, National Center for Nanoscience and Technology.
The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.1-3 The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.4,5 Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.6 Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.7-9 Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.10,11 Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. The results presented herein reveal the potential of the nanotechnology-based technology to provide a powerful alternative to conventional methods for LMWP harvesting from complex biological fluids. Because of the ability to tune the material properties, the capability for low-cost production, the simplicity and rapidity of sample collection, and the greatly reduced sample requirements for analysis, this novel nanotechnology will substantially impact the field of proteomic biomarker research and clinical proteomic assessment.
Bioengineering, Issue 62, Nanoporous silica chip, Low molecular weight proteomics, Peptidomics, MALDI-TOF mass spectrometry, early diagnostics, proteomics
Play Button
Quantitative Analysis of Chromatin Proteomes in Disease
Authors: Emma Monte, Haodong Chen, Maria Kolmakova, Michelle Parvatiyar, Thomas M. Vondriska, Sarah Franklin.
Institutions: David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
Medicine, Issue 70, Molecular Biology, Immunology, Genetics, Genomics, Physiology, Protein, DNA, Chromatin, cardiovascular disease, proteomics, mass spectrometry
Play Button
HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins
Authors: Raghavendra Yadavalli, Tobili Sam-Yellowe.
Institutions: Cleveland State University.
Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed “in vitro human cell free expression systems”. The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer’s Cleft – 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford’s assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be used for immunizations, immunoassays and protein sequencing.
Biochemistry, Issue 100, Cell free in vitro transcription-translation, HeLa cell free expression, rhoptry proteins, mammalian cell free expression system, Plasmodium falciparum, Pro Bond affinity purification
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.