JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Urinary thrombin: a novel marker of glomerular inflammation for the diagnosis of crescentic glomerulonephritis (prospective observational study).
PUBLISHED: 03-06-2015
Crescentic glomerulonephritis (CresGN), an uncommon rapidly progressive disease, is characterized by severe glomerular inflammation with fibrin deposition. The lack of specific CresGN biomarkers delays diagnosis and threatens life. Because fibrin deposits in CresGN glomeruli indicate thrombin generation, we hypothesized that thrombin is excreted in urine and is a specific CresGN biomarker.
Authors: Derek Tilley, Irina Levit, John A. Samis.
Published: 09-09-2012
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
21 Related JoVE Articles!
Play Button
Optimized Fibrin Gel Bead Assay for the Study of Angiogenesis
Authors: Martin N. Nakatsu, Jaeger Davis, Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Angiogenesis is a complex multi-step process, where, in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, branching, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels within the assays often do not resemble vessels in vivo. Based on earlier work by Nehls and Drenckhahn, we have optimized an in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis and, importantly, the vessels display patent intercellular lumens surrounded by polarized EC. EC are coated onto cytodex microcarriers and embedded into a fibrin gel. Fibroblasts are layered on top of the gel where they provide necessary soluble factors that promote EC sprouting from the surface of the beads. After several days, numerous vessels are present that can easily be observed under phase-contrast and time-lapse microscopy. This video demonstrates the key steps in setting up these cultures.
Cellular Biology, Issue 3, angiogenesis, fibrin, endothelial, in vitro, fibroblasts
Play Button
A Modified Precipitation Method to Isolate Urinary Exosomes
Authors: Rupesh Kanchi Ravi, Mahdieh Khosroheidari, Johanna K. DiStefano.
Institutions: Translational Genomics Research Institute (TGen).
Identification of biomarkers that allow early detection of kidney diseases in urine and plasma has been an area of active interest for several years. Urinary exosome vesicles, 40-100 nm in size, are released into the urine under normal conditions by cells from all nephron segments and may contain protein, mRNA and microRNA representative of their cell type of origin. Under conditions of renal dysfunction or injury, exosomes may contain altered proportions of these components, which may serve as biomarkers for disease. There are currently several methods available for isolation of urinary exosomes, and we have previously conducted an experimental comparison of each of these approaches, including three based on ultracentrifugation, one using a nanomembrane ultrafiltration concentrator, one using a commercial precipitation reagent and one using a modification of the precipitation technique using ExoQuick reagent that we developed in our laboratory. We found the modified precipitation method produced the highest yield of exosome particles, miRNA, and mRNA, making this approach suitable for the isolation of exosomes for subsequent RNA profiling. We conclude that the modified exosome precipitation method offers a quick, scalable, and effective alternative for the isolation of exosomes from urine. In this report, we describe our modified precipitation technique using ExoQuick reagent for isolating exosomes from human urine.
Medicine, Issue 95, Translational medicine, exosomes, urine, RNA, western blot, Tamm-Horsfall Protein
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins
Authors: Ruben Magni, Benjamin H. Espina, Lance A. Liotta, Alessandra Luchini, Virginia Espina.
Institutions: George Mason University, Ceres Nanosciences.
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Bioengineering, Issue 90, biomarker, hydrogel, low abundance, mass spectrometry, nanoparticle, plasma, protein, urine
Play Button
Implantation of Fibrin Gel on Mouse Lung to Study Lung-specific Angiogenesis
Authors: Tadanori Mammoto, Akiko Mammoto.
Institutions: Boston Children's Hospital and Harvard Medical School.
Recent significant advances in stem cell research and bioengineering techniques have made great progress in utilizing biomaterials to regenerate and repair damage in simple tissues in the orthopedic and periodontal fields. However, attempts to regenerate the structures and functions of more complex three-dimensional (3D) organs such as lungs have not been very successful because the biological processes of organ regeneration have not been well explored. It is becoming clear that angiogenesis, the formation of new blood vessels, plays key roles in organ regeneration. Newly formed vasculatures not only deliver oxygen, nutrients and various cell components that are required for organ regeneration but also provide instructive signals to the regenerating local tissues. Therefore, to successfully regenerate lungs in an adult, it is necessary to recapitulate the lung-specific microenvironments in which angiogenesis drives regeneration of local lung tissues. Although conventional in vivo angiogenesis assays, such as subcutaneous implantation of extracellular matrix (ECM)-rich hydrogels (e.g., fibrin or collagen gels or Matrigel - ECM protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells), are extensively utilized to explore the general mechanisms of angiogenesis, lung-specific angiogenesis has not been well characterized because methods for orthotopic implantation of biomaterials in the lung have not been well established. The goal of this protocol is to introduce a unique method to implant fibrin gel on the lung surface of living adult mouse, allowing for the successful recapitulation of host lung-derived angiogenesis inside the gel. This approach enables researchers to explore the mechanisms by which the lung-specific microenvironment controls angiogenesis and alveolar regeneration in both normal and pathological conditions. Since implanted biomaterials release and supply physical and chemical signals to adjacent lung tissues, implantation of these biomaterials on diseased lung can potentially normalize the adjacent diseased tissues, enabling researchers to develop new therapeutic approaches for various types of lung diseases.
Basic Protocol, Issue 94, lung, angiogenesis, regeneration, fibrin, gel implantation, microenvironment
Play Button
Experimental and Imaging Techniques for Examining Fibrin Clot Structures in Normal and Diseased States
Authors: Natalie K. Fan, Philip M. Keegan, Manu O. Platt, Rodney D. Averett.
Institutions: Georgia Institute of Technology & Emory University School of Medicine, Georgia Institute of Technology, Georgia Institute of Technology.
Fibrin is an extracellular matrix protein that is responsible for maintaining the structural integrity of blood clots. Much research has been done on fibrin in the past years to include the investigation of synthesis, structure-function, and lysis of clots. However, there is still much unknown about the morphological and structural features of clots that ensue from patients with disease. In this research study, experimental techniques are presented that allow for the examination of morphological differences of abnormal clot structures due to diseased states such as diabetes and sickle cell anemia. Our study focuses on the preparation and evaluation of fibrin clots in order to assess morphological differences using various experimental assays and confocal microscopy. In addition, a method is also described that allows for continuous, real-time calculation of lysis rates in fibrin clots. The techniques described herein are important for researchers and clinicians seeking to elucidate comorbid thrombotic pathologies such as myocardial infarctions, ischemic heart disease, and strokes in patients with diabetes or sickle cell disease.
Medicine, Issue 98, fibrin, clot, disease, confocal microscopy, diabetes, glycation, erythrocyte, sickle cell
Play Button
High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology
Authors: Hari Sreedhar, Vishal K. Varma, Peter L. Nguyen, Bennett Davidson, Sanjeev Akkina, Grace Guzman, Suman Setty, Andre Kajdacsy-Balla, Michael J. Walsh.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.
Medicine, Issue 95, Spectroscopy, Imaging, Fourier Transform, Pathology, Cancer, Liver, Kidney, Hyperspectral, Biopsy, Infrared, Optics, Tissue
Play Button
A Murine Model of Irreversible and Reversible Unilateral Ureteric Obstruction
Authors: Emily E. Hesketh, Madeleine A. Vernon, Peng Ding, Spike Clay, Gary Borthwick, Bryan Conway, Jeremy Hughes.
Institutions: University of Edinburgh.
Obstruction of the kidney may affect native or transplanted kidneys and results in kidney injury and scarring. Presented here is a model of obstructive nephropathy induced by unilateral ureteric obstruction (UUO), which can either be irreversible (UUO) or reversible (R-UUO). In the irreversible UUO model, the ureter may be obstructed for variable periods of time in order to induce increasingly severe renal inflammation and interstitial fibrotic scarring. In the reversible R-UUO model the ureter is obstructed to induce hydronephrosis, tubular dilation and inflammation. After a suitable period of time the ureteric obstruction is then surgically reversed by anastomosis of the severed previously obstructed ureter to the bladder in order to allow complete decompression of the kidney and restoration of urinary flow to the bladder. The irreversible UUO model has been used to investigate various aspects of renal inflammation and scarring including the pathogenesis of disease and the testing of potential anti-inflammatory or anti-fibrotic therapies. The more challenging model of R-UUO has been used by some investigators and does offer significant research potential as it allows the study of inflammatory and immune processes and tissue remodeling in an injured and scarred kidney following the removal of the injurious stimulus. As a result, the R-UUO model offers investigators the opportunity to explore the resolution of kidney inflammation together with key aspects of tissue repair. These experimental models are of relevance to human disease as patients often present with obstruction of the renal tract that requires decompression and are commonly left with significant residual kidney impairment that has no current treatment options and may lead to eventual end stage kidney failure.
Medicine, Issue 94, Mouse, Unilateral Ureteric Obstruction, Irreversible, Reversible, Kidney, Hydronephrosis, Inflammation, Fibrosis
Play Button
A Hydrogel Construct and Fibrin-based Glue Approach to Deliver Therapeutics in a Murine Myocardial Infarction Model.
Authors: Molly Melhem, Tor Jensen, Larissa Reinkensmeyer, Luke Knapp, Jordan Flewellyn, Lawrence Schook.
Institutions: University of Illinois at Urbana-Champaign.
The murine MI model is widely recognized in the field of cardiovascular disease, and has consistently been used as a first step to test the efficacy of treatments in vivo1. The traditional, established protocol has been further fine-tuned to minimize the damage to the animal. Notably, the pectoral muscle layers are teased away rather than simply cut, and the thoracotomy is approached intercostally as opposed to breaking the ribs in a sternotomy, preserving the integrity of the ribcage. With these changes, the overall stress on the animal is decreased. Stem cell therapies aimed to alleviate the damage caused by MIs have shown promise over the years for their pro-angiogenic and anti-apoptotic benefits. Current approaches of delivering cells to the heart surface typically involve the injection of the cells either near the damaged site, within a coronary artery, or into the peripheral blood stream2-4. While the cells have proven to home to the damaged myocardium, functionality is limited by their poor engraftment at the site of injury, resulting in diffusion into the blood stream5. This manuscript highlights a procedure that overcomes this obstacle with the use of a cell-encapsulated hydrogel patch. The patch is fabricated prior to the surgical procedure and is placed on the injured myocardium immediately following the occlusion of the left coronary artery. To adhere the patch in place, biocompatible external fibrin glue is placed directly on top of the patch, allowing for it to dry to both the patch and the heart surface. This approach provides a novel adhesion method for the application of a delicate cell-encapsulating therapeutic construct.
Medicine, Issue 100, Myocardial infarction, stem cell therapy, hydrogel, fibrin-based glue, cell-encapsulated patch, hydrogel adhesion
Play Button
Engineering Fibrin-based Tissue Constructs from Myofibroblasts and Application of Constraints and Strain to Induce Cell and Collagen Reorganization
Authors: Nicky de Jonge, Frank P. T. Baaijens, Carlijn V. C. Bouten.
Institutions: Eindhoven University of Technology.
Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.
Bioengineering, Issue 80, Connective Tissue, Myofibroblasts, Heart Valves, Heart Valve Diseases, Mechanotransduction, Cellular, Adaptation, Biological, Cellular Microenvironment, collagen remodeling, fibrin-based tissues, tissue engineering, cardiovascular
Play Button
Observing and Quantifying Fibroblast-mediated Fibrin Gel Compaction
Authors: Aribet M. De Jesús, Edward A. Sander.
Institutions: University of Iowa.
Cells embedded in collagen and fibrin gels attach and exert traction forces on the fibers of the gel. These forces can lead to local and global reorganization and realignment of the gel microstructure. This process proceeds in a complex manner that is dependent in part on the interplay between the location of the cells, the geometry of the gel, and the mechanical constraints on the gel. To better understand how these variables produce global fiber alignment patterns, we use time-lapse differential interference contrast (DIC) microscopy coupled with an environmentally controlled bioreactor to observe the compaction process between geometrically spaced explants (clusters of fibroblasts). The images are then analyzed with a custom image processing algorithm to obtain maps of the strain. The information obtained from this technique can be used to probe the mechanobiology of various cell-matrix interactions, which has important implications for understanding processes in wound healing, disease development, and tissue engineering applications.
Bioengineering, Issue 83, Fibrin, bioreactor, compaction, anisotropy, time-lapse microscopy, mechanobiology
Play Button
Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury
Authors: Paul Lu, Lori Graham, Yaozhi Wang, Di Wu, Mark Tuszynski.
Institutions: Veterans Administration Medical Center, San Diego, University of California, San Diego.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.
Neuroscience, Issue 89, nervous system diseases, wounds and injuries, biological factors, therapeutics, surgical procedures, neural stem cells, transplantation, spinal cord injury, fibrin, growth factors
Play Button
A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System
Authors: Ariella Shikanov, Min Xu, Teresa K. Woodruff, Lonnie D. Shea.
Institutions: Northwestern University, Northwestern University, Feinberg School of Medicine, Northwestern University, Northwestern University, Northwestern University.
The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly critical for clinical translation in order to support the greater than 106-fold increase in volume that human follicles normally undergo in vivo .
Bioengineering, Issue 49, Ovarian follicle, fibrin-alginate, 3D culture system, dynamic environment
Play Button
Encapsulation of Cardiomyocytes in a Fibrin Hydrogel for Cardiac Tissue Engineering
Authors: Kathy Yuan Ye, Kelly Elizabeth Sullivan, Lauren Deems Black.
Institutions: Tufts University.
Culturing cells in a three dimensional hydrogel environment is an important technique for developing constructs for tissue engineering as well as studying cellular responses under various culture conditions in vitro. The three dimensional environment more closely mimics what the cells observe in vivo due to the application of mechanical and chemical stimuli in all dimensions 1. Three-dimensional hydrogels can either be made from synthetic polymers such as PEG-DA 2 and PLGA 3 or a number of naturally occurring proteins such as collagen 4, hyaluronic acid 5 or fibrin 6,7. Hydrogels created from fibrin, a naturally occurring blood clotting protein, can polymerize to form a mesh that is part of the body's natural wound healing processes 8. Fibrin is cell-degradable and potentially autologous 9, making it an ideal temporary scaffold for tissue engineering. Here we describe in detail the isolation of neonatal cardiomyocytes from three day old rat pups and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. Neonatal myocytes are a common cell source used for in vitro studies in cardiac tissue formation and engineering 4. Fibrin gel is created by mixing fibrinogen with the enzyme thrombin. Thrombin cleaves fibrinopeptides FpA and FpB from fibrinogen, revealing binding sites that interact with other monomers 10. These interactions cause the monomers to self-assemble into fibers that form the hydrogel mesh. Because the timing of this enzymatic reaction can be adjusted by altering the ratio of thrombin to fibrinogen, or the ratio of calcium to thrombin, one can injection mold constructs with a number of different geometries 11,12. Further we can generate alignment of the resulting tissue by how we constrain the gel during culture 13. After culturing the engineered cardiac tissue constructs for two weeks under static conditions, the cardiac cells have begun to remodel the construct and can generate a contraction force under electrical pacing conditions 6. As part of this protocol, we also describe methods for analyzing the tissue engineered myocardium after the culture period including functional analysis of the active force generated by the cardiac muscle construct upon electrical stimulation, as well as methods for determining final cell viability (Live-Dead assay) and immunohistological staining to examine the expression and morphology of typical proteins important for contraction (Myosin Heavy Chain or MHC) and cellular coupling (Connexin 43 or Cx43) between myocytes.
Bioengineering, Issue 55, fibrin, scaffold, hydrogel, cardiac tissue engineering, contraction force, neonatal cardiomyocytes
Play Button
Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications
Authors: Kathleen Kolehmainen, Stephanie M. Willerth.
Institutions: University of Victoria , University of Victoria .
Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche 1. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues 2. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue.3 A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo 4. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors 5. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside 6,7. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach 8-12.
Bioengineering, Issue 61, Extracellular matrix, stem cells, biomaterials, drug delivery, cell culture
Play Button
Engineering a Bilayered Hydrogel to Control ASC Differentiation
Authors: Shanmugasundaram Natesan, David O. Zamora, Laura J. Suggs, Robert J. Christy.
Institutions: United States Army Institute of Surgical Research, The University of Texas at Austin.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
Bioengineering, Issue 63, Biomedical Engineering, Tissue Engineering, chitosan, microspheres, collagen, hydrogel, PEG fibrin, cell delivery, adipose-derived stem cells, ASC, CSM
Play Button
Evaluation of Biomaterials for Bladder Augmentation using Cystometric Analyses in Various Rodent Models
Authors: Duong D. Tu, Abhishek Seth, Eun Seok Gil, David L. Kaplan, Joshua R. Mauney, Carlos R. Estrada Jr..
Institutions: Harvard Medical School, Tufts University.
Renal function and continence of urine are critically dependent on the proper function of the urinary bladder, which stores urine at low pressure and expels it with a precisely orchestrated contraction. A number of congenital and acquired urological anomalies including posterior urethral valves, benign prostatic hyperplasia, and neurogenic bladder secondary to spina bifida/spinal cord injury can result in pathologic tissue remodeling leading to impaired compliance and reduced capacity1. Functional or anatomical obstruction of the urinary tract is frequently associated with these conditions, and can lead to urinary incontinence and kidney damage from increased storage and voiding pressures2. Surgical implantation of gastrointestinal segments to expand organ capacity and reduce intravesical pressures represents the primary surgical treatment option for these disorders when medical management fails3. However, this approach is hampered by the limitation of available donor tissue, and is associated with significant complications including chronic urinary tract infection, metabolic perturbation, urinary stone formation, and secondary malignancy4,5. Current research in bladder tissue engineering is heavily focused on identifying biomaterial configurations which can support regeneration of tissues at defect sites. Conventional 3-D scaffolds derived from natural and synthetic polymers such as small intestinal submucosa and poly-glycolic acid have shown some short-term success in supporting urothelial and smooth muscle regeneration as well as facilitating increased organ storage capacity in both animal models and in the clinic6,7. However, deficiencies in scaffold mechanical integrity and biocompatibility often result in deleterious fibrosis8, graft contracture9, and calcification10, thus increasing the risk of implant failure and need for secondary surgical procedures. In addition, restoration of normal voiding characteristics utilizing standard biomaterial constructs for augmentation cystoplasty has yet to be achieved, and therefore research and development of novel matrices which can fulfill this role is needed. In order to successfully develop and evaluate optimal biomaterials for clinical bladder augmentation, efficacy research must first be performed in standardized animal models using detailed surgical methods and functional outcome assessments. We have previously reported the use of a bladder augmentation model in mice to determine the potential of silk fibroin-based scaffolds to mediate tissue regeneration and functional voiding characteristics.11,12 Cystometric analyses of this model have shown that variations in structural and mechanical implant properties can influence the resulting urodynamic features of the tissue engineered bladders11,12. Positive correlations between the degree of matrix-mediated tissue regeneration determined histologically and functional compliance and capacity evaluated by cystometry were demonstrated in this model11,12. These results therefore suggest that functional evaluations of biomaterial configurations in rodent bladder augmentation systems may be a useful format for assessing scaffold properties and establishing in vivo feasibility prior to large animal studies and clinical deployment. In the current study, we will present various surgical stages of bladder augmentation in both mice and rats using silk scaffolds and demonstrate techniques for awake and anesthetized cystometry.
Bioengineering, Issue 66, Medicine, Biomedical Engineering, Physiology, Silk, bladder tissue engineering, biomaterial, scaffold, matrix, augmentation, cystometry
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
A High-throughput Method for Measurement of Glomerular Filtration Rate in Conscious Mice
Authors: Timo Rieg.
Institutions: University of California, San Diego , San Diego VA Healthcare System.
The measurement of glomerular filtration rate (GFR) is the gold standard in kidney function assessment. Currently, investigators determine GFR by measuring the level of the endogenous biomarker creatinine or exogenously applied radioactive labeled inulin (3H or 14C). Creatinine has the substantial drawback that proximal tubular secretion accounts for ~50% of total renal creatinine excretion and therefore creatinine is not a reliable GFR marker. Depending on the experiment performed, inulin clearance can be determined by an intravenous single bolus injection or continuous infusion (intravenous or osmotic minipump). Both approaches require the collection of plasma or plasma and urine, respectively. Other drawbacks of radioactive labeled inulin include usage of isotopes, time consuming surgical preparation of the animals, and the requirement of a terminal experiment. Here we describe a method which uses a single bolus injection of fluorescein isothiocyanate-(FITC) labeled inulin and the measurement of its fluorescence in 1-2 μl of diluted plasma. By applying a two-compartment model, with 8 blood collections per mouse, it is possible to measure GFR in up to 24 mice per day using a special work-flow protocol. This method only requires brief isoflurane anesthesia with all the blood samples being collected in a non-restrained and awake mouse. Another advantage is that it is possible to follow mice over a period of several months and treatments (i.e. doing paired experiments with dietary changes or drug applications). We hope that this technique of measuring GFR is useful to other investigators studying mouse kidney function and will replace less accurate methods of estimating kidney function, such as plasma creatinine and blood urea nitrogen.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Nephrology, Kidney Function Tests, Glomerular filtration rate, rats, mice, conscious, creatinine, inulin, Jaffe, hypertension, HPLC, animal model
Play Button
Establishment and Characterization of UTI and CAUTI in a Mouse Model
Authors: Matt S. Conover, Ana L. Flores-Mireles, Michael E. Hibbing, Karen Dodson, Scott J. Hultgren.
Institutions: Washington University School of Medicine.
Urinary tract infections (UTI) are highly prevalent, a significant cause of morbidity and are increasingly resistant to treatment with antibiotics. Females are disproportionately afflicted by UTI: 50% of all women will have a UTI in their lifetime. Additionally, 20-40% of these women who have an initial UTI will suffer a recurrence with some suffering frequent recurrences with serious deterioration in the quality of life, pain and discomfort, disruption of daily activities, increased healthcare costs, and few treatment options other than long-term antibiotic prophylaxis. Uropathogenic Escherichia coli (UPEC) is the primary causative agent of community acquired UTI. Catheter-associated UTI (CAUTI) is the most common hospital acquired infection accounting for a million occurrences in the US annually and dramatic healthcare costs. While UPEC is also the primary cause of CAUTI, other causative agents are of increased significance including Enterococcus faecalis. Here we utilize two well-established mouse models that recapitulate many of the clinical characteristics of these human diseases. For UTI, a C3H/HeN model recapitulates many of the features of UPEC virulence observed in humans including host responses, IBC formation and filamentation. For CAUTI, a model using C57BL/6 mice, which retain catheter bladder implants, has been shown to be susceptible to E. faecalis bladder infection. These representative models are being used to gain striking new insights into the pathogenesis of UTI disease, which is leading to the development of novel therapeutics and management or prevention strategies.
Medicine, Issue 100, Escherichia coli, UPEC, Enterococcus faecalis, uropathogenic, catheter, urinary tract infection, IBC, chronic cystitis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.