JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
One-stage vs. two-stage brachio-basilic arteriovenous fistula for dialysis access: a systematic review and a meta-analysis.
.
PLoS ONE
PUBLISHED: 03-10-2015
A brachiobasilic arteriovenous fistula (BB-AVF) can provide access for haemodialysis in patients who are not eligible for a more superficial fistula. However, it is unclear whether one- or two-stage BB-AVF is the best option for patients.
Authors: Shun-Tai Yang, Ana Rodriguez-Hernandez, Espen J. Walker, William L. Young, Hua Su, Michael T. Lawton.
Published: 01-27-2015
ABSTRACT
The understanding of the pathophysiology of brain arteriovenous malformations and arteriovenous fistulas has improved thanks to animal models. A rat model creating an artificial fistula between the common carotid artery (CCA) and the external jugular vein (EJV) has been widely described and proved technically feasible. This construct provokes a consistent cerebral venous hypertension (CVH), and therefore has helped studying the contribution of venous hypertension to formation, clinical symptoms, and prognosis of brain AVMs and dural AVFs. Equivalent mice models have been only scarcely described and have shown trouble with stenosis of the fistula. An established murine model would allow the study of not only pathophysiology but also potential genetic therapies for these cerebrovascular diseases. We present a model of arteriovenous fistula that produces a durable intracranial venous hypertension in the mouse. Microsurgical anastomosis of the murine CCA and EJV can be difficult due to diminutive anatomy and frequently result in a non-patent fistula. In this step-by-step protocol we address all the important challenges encountered during this procedure. Avoiding excessive retraction of the vein during the exposure, using 11-0 sutures instead of 10-0, and making a carefully planned end-to-side anastomosis are some of the critical steps. Although this method requires advanced microsurgical skills and a longer learning curve that the equivalent in the rat, it can be consistently developed. This novel model has been designed to integrate transgenic mouse techniques with a previously well-established experimental system that has proved useful to study brain AVMs and dural AVFs. By opening the possibility of using transgenic mice, a broader spectrum of valid models can be achieved and genetic treatments can also be tested. The experimental construct could also be further adapted to the study of other cerebrovascular diseases related with venous hypertension such as migraine, transient global amnesia, transient monocular blindness, etc.
20 Related JoVE Articles!
Play Button
Technical Aspects of the Mouse Aortocaval Fistula
Authors: Kota Yamamoto, Xin Li, Chang Shu, Tetsuro Miyata, Alan Dardik.
Institutions: Yale University, The University of Tokyo, Central South University, VA Connecticut Healthcare Systems.
Technical aspects of creating an arteriovenous fistula in the mouse are discussed. Under general anesthesia, an abdominal incision is made, and the aorta and inferior vena cava (IVC) are exposed. The proximal infrarenal aorta and the distal aorta are dissected for clamp placement and needle puncture, respectively. Special attention is paid to avoid dissection between the aorta and the IVC. After clamping the aorta, a 25 G needle is used to puncture both walls of the aorta into the IVC. The surrounding connective tissue is used for hemostatic compression. Successful creation of the AVF will show pulsatile arterial blood flow in the IVC. Further confirmation of successful AVF can be achieved by post-operative Doppler ultrasound.
Biomedical Engineering, Issue 77, Medicine, Anatomy, Physiology, Surgery, Cardiology, Hematology, Blood Vessels, Arteries, Aorta, Abdominal, Veins, Vena Cava, Inferior, Cardiovascular System, aortocaval fistula, mouse, puncture, Doppler ultrasound, compression, surgical techniques, animal model
50449
Play Button
Generation of Comprehensive Thoracic Oncology Database - Tool for Translational Research
Authors: Mosmi Surati, Matthew Robinson, Suvobroto Nandi, Leonardo Faoro, Carley Demchuk, Rajani Kanteti, Benjamin Ferguson, Tara Gangadhar, Thomas Hensing, Rifat Hasina, Aliya Husain, Mark Ferguson, Theodore Karrison, Ravi Salgia.
Institutions: University of Chicago, University of Chicago, Northshore University Health Systems, University of Chicago, University of Chicago, University of Chicago.
The Thoracic Oncology Program Database Project was created to serve as a comprehensive, verified, and accessible repository for well-annotated cancer specimens and clinical data to be available to researchers within the Thoracic Oncology Research Program. This database also captures a large volume of genomic and proteomic data obtained from various tumor tissue studies. A team of clinical and basic science researchers, a biostatistician, and a bioinformatics expert was convened to design the database. Variables of interest were clearly defined and their descriptions were written within a standard operating manual to ensure consistency of data annotation. Using a protocol for prospective tissue banking and another protocol for retrospective banking, tumor and normal tissue samples from patients consented to these protocols were collected. Clinical information such as demographics, cancer characterization, and treatment plans for these patients were abstracted and entered into an Access database. Proteomic and genomic data have been included in the database and have been linked to clinical information for patients described within the database. The data from each table were linked using the relationships function in Microsoft Access to allow the database manager to connect clinical and laboratory information during a query. The queried data can then be exported for statistical analysis and hypothesis generation.
Medicine, Issue 47, Database, Thoracic oncology, Bioinformatics, Biorepository, Microsoft Access, Proteomics, Genomics
2414
Play Button
The Attentional Set Shifting Task: A Measure of Cognitive Flexibility in Mice
Authors: Jillian M. Heisler, Juan Morales, Jennifer J. Donegan, Julianne D. Jett, Laney Redus, Jason C. O'Connor.
Institutions: University of Texas Health Science Center at San Antonio, South Texas Veteran's Health Care System.
Cognitive impairment, particularly involving dysfunction of circuitry within the prefrontal cortex (PFC), represents a core feature of many neuropsychiatric and neurodevelopmental disorders, including depression, post-traumatic stress disorder, schizophrenia and autism spectrum disorder. Deficits in cognitive function also represent the most difficult symptom domain to successfully treat, as serotonin reuptake inhibitors and tricyclic antidepressants have only modest effects. Functional neuroimaging studies and postmortem analysis of human brain tissue implicate the PFC as being a primary region of dysregulation in patients with these disorders. However, preclinical behavioral assays used to assess these deficits in mouse models which can be readily manipulated genetically and could provide the basis for studies of new treatment avenues have been underutilized. Here we describe the adaptation of a behavioral assay, the attentional set shifting task (AST), to be performed in mice to assess prefrontal cortex mediated cognitive deficits. The neural circuits underlying behavior during the AST are highly conserved across humans, nonhuman primates and rodents, providing excellent face, construct and predictive validity.
Behavior, Issue 96, cognitive flexibility, prefrontal cortex, behavior, attention, mouse, neuropsychiatric symptom, cognitive dysfunction
51944
Play Button
Procedure for Human Saphenous Veins Ex Vivo Perfusion and External Reinforcement
Authors: Alban Longchamp, Florent Allagnat, Xavier Berard, Florian Alonso, Jacques-Antoine Haefliger, Sébastien Deglise, Jean-Marc Corpataux.
Institutions: Brigham and Women's Hospital/Harvard Medical School, CHUV University Hospital, University of Bordeaux, CHUV University Hospital.
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.
Medicine, Issue 92, vein, human, intimal hyperplasia, neointima, perfusion, mesh, pressure, ex vivo
52079
Play Button
Signal Attenuation as a Rat Model of Obsessive Compulsive Disorder
Authors: Koral Goltseker, Roni Yankelevitch-Yahav, Noa S. Albelda, Daphna Joel.
Institutions: Tel-Aviv University, Tel-Aviv University.
In the signal attenuation rat model of obsessive-compulsive disorder (OCD), lever-pressing for food is followed by the presentation of a compound stimulus which serves as a feedback cue. This feedback is later attenuated by repeated presentations of the stimulus without food (without the rat emitting the lever-press response). In the next stage, lever-pressing is assessed under extinction conditions (i.e., no food is delivered). At this stage rats display two types of lever-presses, those that are followed by an attempt to collect a reward, and those that are not. The latter are the measure of compulsive-like behavior in the model. A control procedure in which rats do not experience the attenuation of the feedback cue serves to distinguish between the effects of signal attenuation and of extinction. The signal attenuation model is a highly validated model of OCD and differentiates between compulsive-like behaviors and behaviors that are repetitive but not compulsive. In addition the measures collected during the procedure eliminate alternative explanations for differences between the groups being tested, and are quantitative, unbiased and unaffected by inter-experimenter variability. The major disadvantages of this model are the costly equipment, the fact that it requires some technical know-how and the fact that it is time-consuming compared to other models of OCD (11 days). The model may be used for detecting the anti- or pro-compulsive effects of pharmacological and non-pharmacological manipulations and for studying the neural substrate of compulsive behavior.
Behavior, Issue 95, Obsessive-compulsive disorder, OCD, signal attenuation, rat, animal model, pharmacology, lever-press, behavioral neuroscience
52287
Play Button
Single-stage Dynamic Reanimation of the Smile in Irreversible Facial Paralysis by Free Functional Muscle Transfer
Authors: Jan Thiele, Holger Bannasch, G. Bjoern Stark, Steffen U. Eisenhardt.
Institutions: University of Freiburg Medical Centre.
Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell’s palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results.
Medicine, Issue 97, microsurgery, free microvascular tissue transfer, face, head, head and neck surgery, facial paralysis
52386
Play Button
A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay
Authors: Jennifer A. Martin, Joshua E. Smith, Mercedes Warren, Jorge L. Chávez, Joshua A. Hagen, Nancy Kelley-Loughnane.
Institutions: Wright-Patterson Air Force Base, The Henry M. Jackson Foundation, UES, Inc..
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.
Molecular Biology, Issue 96, Aptamer, structure-switching, SELEX, small molecule, cortisol, next generation sequencing, gold nanoparticle, assay
52545
Play Button
Non-fluoroscopic Catheter Tracking for Fluoroscopy Reduction in Interventional Electrophysiology
Authors: Philipp Sommer, Simon Kircher, Sascha Rolf, Sergio Richter, Micha Doering, Arash Arya, Andreas Bollmann, Gerhard Hindricks.
Institutions: University of Leipzig.
A technological platform (MediGuide) has been recently introduced for non-fluoroscopic catheter tracking. In several studies, we have demonstrated that the application of this non-fluoroscopic catheter visualization system (NFCV) reduces fluoroscopy time and dose by 90-95% in a variety of electrophysiology (EP) procedures. This can be of relevance not only to the patients, but also to the nurses and physicians working in the EP lab. Furthermore, in a subset of indications such as supraventricular tachycardias, NFCV enables a fully non-fluoroscopic procedure and allows the lab staff to work without wearing lead aprons. With this protocol, we demonstrate that even complex procedures such as ablations of atrial fibrillation, that are typically associated with fluoroscopy times of >30 min in conventional settings, can safely be performed with a reduction of >90% in fluoroscopy exposure by the additional use of NFCV.
Medicine, Issue 99, Fluoroscopy, ablation, radiation exposure, atrial fibrillation, 3D mapping, electrophysiology
52606
Play Button
Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells
Authors: Sachi Horibata, Tommy V. Vo, Venkataraman Subramanian, Paul R. Thompson, Scott A. Coonrod.
Institutions: Cornell University, Cornell University, University of Massachusetts Medical School.
Given the inherent difficulties in investigating the mechanisms of tumor progression in vivo, cell-based assays such as the soft agar colony formation assay (hereafter called soft agar assay), which measures the ability of cells to proliferate in semi-solid matrices, remain a hallmark of cancer research. A key advantage of this technique over conventional 2D monolayer or 3D spheroid cell culture assays is the close mimicry of the 3D cellular environment to that seen in vivo. Importantly, the soft agar assay also provides an ideal tool to rigorously test the effects of novel compounds or treatment conditions on cell proliferation and migration. Additionally, this assay enables the quantitative assessment of cell transformation potential within the context of genetic perturbations. We recently identified peptidylarginine deiminase 2 (PADI2) as a potential breast cancer biomarker and therapeutic target. Here we highlight the utility of the soft agar assay for preclinical anti-cancer studies by testing the effects of the PADI inhibitor, BB-Cl-amidine (BB-CLA), on the tumorigenicity of human ductal carcinoma in situ (MCF10DCIS) cells.
Medicine, Issue 99, Peptidylarginine deiminase enzymes, breast cancer, soft agar assay, cellular transformation, cancer therapies
52727
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
51809
Play Button
Infinium Assay for Large-scale SNP Genotyping Applications
Authors: Adam J. Adler, Graham B. Wiley, Patrick M. Gaffney.
Institutions: Oklahoma Medical Research Foundation.
Genotyping variants in the human genome has proven to be an efficient method to identify genetic associations with phenotypes. The distribution of variants within families or populations can facilitate identification of the genetic factors of disease. Illumina's panel of genotyping BeadChips allows investigators to genotype thousands or millions of single nucleotide polymorphisms (SNPs) or to analyze other genomic variants, such as copy number, across a large number of DNA samples. These SNPs can be spread throughout the genome or targeted in specific regions in order to maximize potential discovery. The Infinium assay has been optimized to yield high-quality, accurate results quickly. With proper setup, a single technician can process from a few hundred to over a thousand DNA samples per week, depending on the type of array. This assay guides users through every step, starting with genomic DNA and ending with the scanning of the array. Using propriety reagents, samples are amplified, fragmented, precipitated, resuspended, hybridized to the chip, extended by a single base, stained, and scanned on either an iScan or Hi Scan high-resolution optical imaging system. One overnight step is required to amplify the DNA. The DNA is denatured and isothermally amplified by whole-genome amplification; therefore, no PCR is required. Samples are hybridized to the arrays during a second overnight step. By the third day, the samples are ready to be scanned and analyzed. Amplified DNA may be stockpiled in large quantities, allowing bead arrays to be processed every day of the week, thereby maximizing throughput.
Basic Protocol, Issue 81, genomics, SNP, Genotyping, Infinium, iScan, HiScan, Illumina
50683
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
50436
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
50124
Play Button
Quantitative, Real-time Analysis of Base Excision Repair Activity in Cell Lysates Utilizing Lesion-specific Molecular Beacons
Authors: David Svilar, Conchita Vens, Robert W. Sobol.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, The Netherlands Cancer Institute, University of Pittsburgh School of Public Health.
We describe a method for the quantitative, real-time measurement of DNA glycosylase and AP endonuclease activities in cell nuclear lysates using base excision repair (BER) molecular beacons. The substrate (beacon) is comprised of a deoxyoligonucleotide containing a single base lesion with a 6-Carboxyfluorescein (6-FAM) moiety conjugated to the 5'end and a Dabcyl moiety conjugated to the 3' end of the oligonucleotide. The BER molecular beacon is 43 bases in length and the sequence is designed to promote the formation of a stem-loop structure with 13 nucleotides in the loop and 15 base pairs in the stem1,2. When folded in this configuration the 6-FAM moiety is quenched by Dabcyl in a non-fluorescent manner via Förster Resonance Energy Transfer (FRET)3,4. The lesion is positioned such that following base lesion removal and strand scission the remaining 5 base oligonucleotide containing the 6-FAM moiety is released from the stem. Release and detachment from the quencher (Dabcyl) results in an increase of fluorescence that is proportionate to the level of DNA repair. By collecting multiple reads of the fluorescence values, real-time assessment of BER activity is possible. The use of standard quantitative real-time PCR instruments allows the simultaneous analysis of numerous samples. The design of these BER molecular beacons, with a single base lesion, is amenable to kinetic analyses, BER quantification and inhibitor validation and is adaptable for quantification of DNA Repair activity in tissue and tumor cell lysates or with purified proteins. The analysis of BER activity in tumor lysates or tissue aspirates using these molecular beacons may be applicable to functional biomarker measurements. Further, the analysis of BER activity with purified proteins using this quantitative assay provides a rapid, high-throughput method for the discovery and validation of BER inhibitors.
Molecular Biology, Issue 66, Genetics, Cancer Biology, Base excision repair, DNA glycosylase, AP endonuclease, fluorescent, real-time, activity assay, molecular beacon, biomarker, DNA Damage, base lesion
4168
Play Button
Functional Assessment of Intestinal Motility and Gut Wall Inflammation in Rodents: Analyses in a Standardized Model of Intestinal Manipulation
Authors: Tim O. Vilz, Marcus Overhaus, Burkhard Stoffels, Martin von Websky, Joerg C. Kalff, Sven Wehner.
Institutions: University of Bonn.
Inflammation of the gastrointestinal tract is a common reason for a variety of human diseases. Animal research models are critical in investigating the complex cellular and molecular of intestinal pathology. Although the tunica mucosa is often the organ of interest in many inflammatory diseases, recent works demonstrated that the muscularis externa (ME) is also a highly immunocompetent organ that harbours a dense network of resident immunocytes.1,2 These works were performed within the standardized model of intestinal manipulation (IM) that leads to inflammation of the bowel wall, mainly limited to the ME. Clinically this inflammation leads to prolonged intestinal dysmotility, known as postoperative ileus (POI) which is a frequent and unavoidable complication after abdominal surgery.3 The inflammation is characterized by liberation of proinflammatory mediators such as IL-64 or IL-1β or inhibitory neurotransmitters like nitric oxide (NO).5 Subsequently, tremendous numbers of immunocytes extravasate into the ME, dominated by polymorphonuclear neutrophils (PMN) and monocytes and finally maintain POI.2 Lasting for days, this intestinal paralysis leads to an increased risk of aspiration, bacterial translocation and infectious complications up to sepsis and multi organ failure and causes a high economic burden.6 In this manuscript we demonstrate the standardized model of IM and in vivo assessment of gastrointestinal transit (GIT) and colonic transit. Furthermore we demonstrate a method for separation of the ME from the tunica mucosa followed by immunological analysis, which is crucial to distinguish between the inflammatory responses in these both highly immunoactive bowel wall compartments. All analyses are easily transferable to any other research models, affecting gastrointestinal function.
Medicine, Issue 67, Immunology, Anatomy, Physiology, intestinal manipulation, muscularis externa, intestinal inflammation, postoperative ileus, gastrointestinal transit, gut wall
4086
Play Button
Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay
Authors: Derek Tilley, Irina Levit, John A. Samis.
Institutions: University of Ontario Institute of Technology , University of Ontario Institute of Technology , University of Ontario Institute of Technology .
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
Immunology, Issue 67, Factor V, Microplate, Coagulation assay, Human plasma, Disseminated intravascular coagulation (DIC), blood clotting
3822
Play Button
Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): a Method for Bacterial Small RNA Detection
Authors: Kelly L. Robertson, Gary J. Vora.
Institutions: Naval Research Laboratory.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination1,2, cellular identification and gene expression3,4, monitoring viral multiplication in infected cells5, and bacterial community analysis and enumeration6. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (Tm) of these analogs for natural nucleic acids7,8. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence9,10. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes7,11 and have been successfully used to detect eukaryotic mRNA12 and viral RNA in mammalian cells5. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes13. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).
Immunology, Issue 59, fluorescence in situ hybridization, FISH, flow cytometry, locked nucleic acid, sRNA, Vibrio
3655
Play Button
Cerebrovascular Casting of the Adult Mouse for 3D Imaging and Morphological Analysis
Authors: Espen J. Walker, Fanxia Shen, William L. Young, Hua Su.
Institutions: University of California, San Francisco, University of California, San Francisco, University of California, San Francisco.
Vascular imaging is crucial in the clinical diagnosis and management of cerebrovascular diseases, such as brain arteriovenous malformations (BAVMs). Animal models are necessary for studying the etiopathology and potential therapies of cerebrovascular diseases. Imaging the vasculature in large animals is relatively easy. However, developing vessel imaging methods of murine brain disease models is desirable due to the cost and availability of genetically-modified mouse lines. Imaging the murine cerebral vascular tree is a challenge. In humans and larger animals, the gold standard for assessing the angioarchitecture at the macrovascular (conductance) level is x-ray catheter contrast-based angiography, a method not suited for small rodents. In this article, we present a method of cerebrovascular casting that produces a durable skeleton of the entire vascular bed, including arteries, veins, and capillaries that may be analyzed using many different modalities. Complete casting of the microvessels of the mouse cerebrovasculature can be difficult; however, these challenges are addressed in this step-by-step protocol. Through intracardial perfusion of the vascular casting material, all vessels of the body are casted. The brain can then be removed and clarified using the organic solvent methyl salicylate. Three dimensional imaging of the brain blood vessels can be visualized simply and inexpensively with any conventional brightfield microscope or dissecting microscope. The casted cerebrovasculature can also be imaged and quantified using micro-computed tomography (micro-CT)1. In addition, after being imaged, the casted brain can be embedded in paraffin for histological analysis. The benefit of this vascular casting method as compared to other techniques is its broad adaptation to various analytic tools, including brightfield microscopic analysis, CT scanning due to the radiopaque characteristic of the material, as well as histological and immunohistochemical analysis. This efficient use of tissue can save animal usage and reduce costs. We have recently demonstrated application of this method to visualize the irregular blood vessels in a mouse model of adult BAVM at a microscopic level2, and provide additional images of the malformed vessels imaged by micro-CT scan. Although this method has drawbacks and may not be ideal for all types of analyses, it is a simple, practical technique that can be easily learned and widely applied to vascular casting of blood vessels throughout the body.
Neuroscience, Issue 57, vessel, vascular cast, capillary, cerebrovasculature, brain, blood, AVM, fistula
2958
Play Button
Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation
Authors: J. Moritz Kaths, Vinzent N. Spetzler, Nicolas Goldaracena, Juan Echeverri, Kristine S. Louis, Daniel B. Foltys, Mari Strempel, Paul Yip, Rohan John, Istvan Mucsi, Anand Ghanekar, Darius Bagli, Lisa Robinson, Markus Selzner.
Institutions: Toronto General Hospital, The Hospital for Sick Children, Toronto, University Medical Center Mainz, Merheim Medical Center Cologne, Toronto General Hospital, The Hospital for Sick Children, Toronto, The Hospital for Sick Children, Toronto.
Kidney transplantation has become a well-established treatment option for patients with end-stage renal failure. The persisting organ shortage remains a serious problem. Therefore, the acceptance criteria for organ donors have been extended leading to the usage of marginal kidney grafts. These marginal organs tolerate cold storage poorly resulting in increased preservation injury and higher rates of delayed graft function. To overcome the limitations of cold storage, extensive research is focused on alternative normothermic preservation methods. Ex vivo normothermic organ perfusion is an innovative preservation technique. The first experimental and clinical trials for ex vivo lung, liver, and kidney perfusions demonstrated favorable outcomes. In addition to the reduction of cold ischemic injury, the method of normothermic kidney storage offers the opportunity for organ assessment and repair. This manuscript provides information about kidney retrieval, organ preservation techniques, and isolated ex vivo normothermic kidney perfusion (NEVKP) in a porcine model. Surgical techniques, set up for the perfusion solution and the circuit, potential assessment options, and representative results are demonstrated.
Medicine, Issue 101, Kidney transplantation, organ shortage, organ preservation, normothermic ex vivo kidney perfusion (NEVKP), cold storage (CS), hypothermic machine perfusion (HMP), standard criteria donor (SCD), extended criteria donor (ECD), donation after circulatory death (DCD), marginal graft, delayed graft function (DGF), primary non function (PNF)
52909
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.