JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Deletion of Jun proteins in adult oligodendrocytes does not perturb cell survival, or myelin maintenance in vivo.
PUBLISHED: 03-17-2015
Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS), are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions.
Authors: Robert A. Hill, Jelena Medved, Kiran D. Patel, Akiko Nishiyama.
Published: 08-25-2014
NG2 expressing cells (polydendrocytes, oligodendrocyte precursor cells) are the fourth major glial cell population in the central nervous system. During embryonic and postnatal development they actively proliferate and generate myelinating oligodendrocytes. These cells have commonly been studied in primary dissociated cultures, neuron cocultures, and in fixed tissue. Using newly available transgenic mouse lines slice culture systems can be used to investigate proliferation and differentiation of oligodendrocyte lineage cells in both gray and white matter regions of the forebrain and cerebellum. Slice cultures are prepared from early postnatal mice and are kept in culture for up to 1 month. These slices can be imaged multiple times over the culture period to investigate cellular behavior and interactions. This method allows visualization of NG2 cell division and the steps leading to oligodendrocyte differentiation while enabling detailed analysis of region-dependent NG2 cell and oligodendrocyte functional heterogeneity. This is a powerful technique that can be used to investigate the intrinsic and extrinsic signals influencing these cells over time in a cellular environment that closely resembles that found in vivo.
19 Related JoVE Articles!
Play Button
Progenitor-derived Oligodendrocyte Culture System from Human Fetal Brain
Authors: Maria Chiara G. Monaco, Dragan Maric, Alexandra Bandeian, Emily Leibovitch, Wan Yang, Eugene O. Major.
Institutions: National Institute of Neurological Disorders and Stroke, National Institutes of Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health.
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside+ (GalC) and O4+ oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation. Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.
Neuroscience, Issue 70, Developmental Biology, Medicine, Stem Cell Biology, Molecular Biology, Cellular Biology, Physiology, lineage characterization, neural progenitors, differentiation, cell culture model
Play Button
Experimental Demyelination and Remyelination of Murine Spinal Cord by Focal Injection of Lysolecithin
Authors: Michael B. Keough, Samuel K. Jensen, V. Wee Yong.
Institutions: Hotchkiss Brain Institute at University of Calgary, Hotchkiss Brain Institute at University of Calgary.
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system characterized by plaque formation containing lost oligodendrocytes, myelin, axons, and neurons. Remyelination is an endogenous repair mechanism whereby new myelin is produced subsequent to proliferation, recruitment, and differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes, and is necessary to protect axons from further damage. Currently, all therapeutics for the treatment of multiple sclerosis target the aberrant immune component of the disease, which reduce inflammatory relapses but do not prevent progression to irreversible neurological decline. It is therefore imperative that remyelination-promoting strategies be developed which may delay disease progression and perhaps reverse neurological symptoms. Several animal models of demyelination exist, including experimental autoimmune encephalomyelitis and curprizone; however, there are limitations in their use for studying remyelination. A more robust approach is the focal injection of toxins into the central nervous system, including the detergent lysolecithin into the spinal cord white matter of rodents. In this protocol, we demonstrate that the surgical procedure involved in injecting lysolecithin into the ventral white matter of mice is fast, cost-effective, and requires no additional materials than those commercially available. This procedure is important not only for studying the normal events involved in the remyelination process, but also as a pre-clinical tool for screening candidate remyelination-promoting therapeutics.
Neuroscience, Issue 97, demyelination, remyelination, lysolecithin, spinal cord, oligodendrocyte, myelin, multiple sclerosis
Play Button
Using Fluorescence Activated Cell Sorting to Examine Cell-Type-Specific Gene Expression in Rat Brain Tissue
Authors: Jaclyn M. Schwarz.
Institutions: University of Delaware.
The brain is comprised of four primary cell types including neurons, astrocytes, microglia and oligodendrocytes. Though they are not the most abundant cell type in the brain, neurons are the most widely studied of these cell types given their direct role in impacting behaviors. Other cell types in the brain also impact neuronal function and behavior via the signaling molecules they produce. Neuroscientists must understand the interactions between the cell types in the brain to better understand how these interactions impact neural function and disease. To date, the most common method of analyzing protein or gene expression utilizes the homogenization of whole tissue samples, usually with blood, and without regard for cell type. This approach is an informative approach for examining general changes in gene or protein expression that may influence neural function and behavior; however, this method of analysis does not lend itself to a greater understanding of cell-type-specific gene expression and the effect of cell-to-cell communication on neural function. Analysis of behavioral epigenetics has been an area of growing focus which examines how modifications of the deoxyribonucleic acid (DNA) structure impact long-term gene expression and behavior; however, this information may only be relevant if analyzed in a cell-type-specific manner given the differential lineage and thus epigenetic markers that may be present on certain genes of individual neural cell types. The Fluorescence Activated Cell Sorting (FACS) technique described below provides a simple and effective way to isolate individual neural cells for the subsequent analysis of gene expression, protein expression, or epigenetic modifications of DNA. This technique can also be modified to isolate more specific neural cell types in the brain for subsequent cell-type-specific analysis.
Neuroscience, Issue 99, Fluorescence activated cell sorting, GLT-1, Thy1, CD11b, real-time PCR, gene expression
Play Button
An Ex vivo Model of an Oligodendrocyte-directed T-Cell Attack in Acute Brain Slices
Authors: Kerstin Göbel, Stefan Bittner, Manuela Cerina, Alexander M. Herrmann, Heinz Wiendl, Sven G. Meuth.
Institutions: University of Münster, Germany and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster.
Death of oligodendrocytes accompanied by destruction of neurons and axons are typical histopathological findings in cortical and subcortical grey matter lesions in inflammatory demyelinating disorders like multiple sclerosis (MS). In these disorders, mainly CD8+ T-cells of putative specificity for myelin- and oligodendrocyte-related antigens are found, so that neuronal apoptosis in grey matter lesions may be a collateral effect of these cells. Different types of animal models are established to study the underlying mechanisms of the mentioned pathophysiological processes. However, although they mimic some aspects of MS, it is impossible to dissect the exact mechanism and time course of ‘‘collateral’’ neuronal cell death. To address this course, here we show a protocol to study the mechanisms and time response of neuronal damage following an oligodendrocyte-directed CD8+ T cell attack. To target only the myelin sheath and the oligodendrocytes, in vitro activated oligodendrocyte-specific CD8+ T-cells are transferred into acutely isolated brain slices. After a defined incubation period, myelin and neuronal damage can be analysed in different regions of interest. Potential applications and limitations of this model will be discussed.
Immunology, Issue 96, acute brain slices, multiple sclerosis, MS, ex vivo model, autoimmunity, neuroinflammation, central nervous system
Play Button
Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord
Authors: Andrea Mothe, Charles H. Tator.
Institutions: Toronto Western Research Institute and Krembil Neuroscience Center, Toronto Western Hospital and University of Toronto.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.
Developmental Biology, Issue 99, neuroscience, cellular biology, neural stem cells, spinal cord, cell culture, rat, human
Play Button
Production and Use of Lentivirus to Selectively Transduce Primary Oligodendrocyte Precursor Cells for In Vitro Myelination Assays
Authors: Haley M. Peckham, Anita H. Ferner, Lauren Giuffrida, Simon S. Murray, Junhua Xiao.
Institutions: The University of Melbourne, The University of Melbourne.
Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination.
Developmental Biology, Issue 95, lentivirus, cocultures, oligodendrocyte, myelination, oligodendrocyte precursor cells, dorsal root ganglion neurons
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
Play Button
Preparation of Rat Brain Aggregate Cultures for Neuron and Glia Development Studies
Authors: Hisami Koito, Jianrong Li.
Institutions: Texas A&M University (TAMU).
An in vitro system that recapitulates the development and differentiation of progenitors into mature neurons and glia in the central nervous system (CNS) would provide a powerful platform for neuroscientists to investigate axo-glial interactions, properties and differentiation of multipotent progenitors, and progression of oligodendroglial lineage cells at the cellular and molecular level. We describe here a CNS aggregate culture system from embryonic rat forebrains, which can be maintained in a serum-free medium up to 3-4 weeks and is used in our laboratory as a model to study neuron-glia interaction and CNS myelination. This video clip will demonstrate how to isolate and grow these CNS aggregate cultures from E16 rat brain. Furthermore, from the same brain dissection, highly enriched regular dissociated neuronal cultures can be readily obtained and used for various studies on CNS neurons or used for co-cultures with other cells.
Developmental Biology, Issue 31, brain, rat, aggregates, progenitors, differentiation, glia, neurons, oligodendrocytes, myelination
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Myelin Oligodendrocyte Glycoprotein (MOG35-55) Induced Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice
Authors: Stefan Bittner, Ali M. Afzali, Heinz Wiendl, Sven G. Meuth.
Institutions: University of Münster, Interdisciplinary Center for Clinical Research (IZKF), Münster, University of Münster.
Multiple sclerosis is a chronic neuroinflammatory demyelinating disorder of the central nervous system with a strong neurodegenerative component. While the exact etiology of the disease is yet unclear, autoreactive T lymphocytes are thought to play a central role in its pathophysiology. MS therapy is only partially effective so far and research efforts continue to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for MS sharing many clinical and pathophysiological features. There is a broad diversity of EAE models which reflect different clinical, immunological and histological aspects of human MS. Actively-induced EAE in mice is the easiest inducible model with robust and replicable results. It is especially suited for investigating the effects of drugs or of particular genes by using transgenic mice challenged by autoimmune neuroinflammation. Therefore, mice are immunized with CNS homogenates or peptides of myelin proteins. Due to the low immunogenic potential of these peptides, strong adjuvants are used. EAE susceptibility and phenotype depends on the chosen antigen and rodent strain. C57BL/6 mice are the commonly used strain for transgenic mouse construction and respond among others to myelin oligodendrocyte glycoprotein (MOG). The immunogenic epitope MOG35-55 is suspended in complete Freund's adjuvant (CFA) prior to immunization and pertussis toxin is applied on the day of immunization and two days later. Mice develop a "classic" self-limited monophasic EAE with ascending flaccid paralysis within 9-14 days after immunization. Mice are evaluated daily using a clinical scoring system for 25-50 days. Special considerations for care taking of animals with EAE as well as potential applications and limitations of this model are discussed.
Immunology, Issue 86, experimental autoimmune encephalomyelitis, EAE, multiple sclerosis, MS, animal model, Autoimmunity, neuroinflammation, central nervous system, pertussis
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Derivation of Glial Restricted Precursors from E13 mice
Authors: André W. Phillips, Sina Falahati, Roshi DeSilva, Irina Shats, Joel Marx, Edwin Arauz, Douglas A. Kerr, Jeffrey D. Rothstein, Michael V. Johnston, Ali Fatemi.
Institutions: Johns Hopkins University, Johns Hopkins School of Medicine, University of Maryland , Biogen Idec, Johns Hopkins School of Medicine, Johns Hopkins School of Medicine.
This is a protocol for derivation of glial restricted precursor (GRP) cells from the spinal cord of E13 mouse fetuses. These cells are early precursors within the oligodendrocytic cell lineage. Recently, these cells have been studied as potential source for restorative therapies in white matter diseases. Periventricular leukomalacia (PVL) is the leading cause of non-genetic white matter disease in childhood and affects up to 50% of extremely premature infants. The data suggest a heightened susceptibility of the developing brain to hypoxia-ischemia, oxidative stress and excitotoxicity that selectively targets nascent white matter. Glial restricted precursors (GRP), oligodendrocyte progenitor cells (OPC) and immature oligodendrocytes (preOL) seem to be key players in the development of PVL and are the subject of continuing studies. Furthermore, previous studies have identified a subset of CNS tissue that has increased susceptibility to glutamate excitotoxicity as well as a developmental pattern to this susceptibility. Our laboratory is currently investigating the role of oligodendrocyte progenitors in PVL and use cells at the GRP stage of development. We utilize these derived GRP cells in several experimental paradigms to test their response to select stresses consistent with PVL. GRP cells can be manipulated in vitro into OPCs and preOL for transplantation experiments with mouse PVL models and in vitro models of PVL-like insults including hypoxia-ischemia. By using cultured cells and in vitro studies there would be reduced variability between experiments which facilitates interpretation of the data. Cultured cells also allows for enrichment of the GRP population while minimizing the impact of contaminating cells of non-GRP phenotype.
Neuroscience, Issue 64, Physiology, Medicine, periventricular leukomalacia, oligodendrocytes, glial restricted precursors, spinal cord, cell culture
Play Button
Monitoring Cleaved Caspase-3 Activity and Apoptosis of Immortalized Oligodendroglial Cells using Live-cell Imaging and Cleaveable Fluorogenic-dye Substrates Following Potassium-induced Membrane Depolarization
Authors: Graham S.T. Smith, Janine A.M. Voyer-Grant, George Harauz.
Institutions: University of Guelph.
The central nervous system can experience a number of stresses and neurological insults, which can have numerous adverse effects that ultimately lead to a reduction in neuronal population and function. Damaged axons can release excitatory molecules including potassium or glutamate into the extracellular matrix, which in turn, can produce further insult and injury to the supporting glial cells including astrocytes and oligodendrocytes 8, 16. If the insult persists, cells will undergo programmed cell death (apoptosis), which is regulated and activated by a number of well-established signal transduction cascades 14. Apoptosis and tissue necrosis can occur after traumatic brain injury, cerebral ischemia, and seizures. A classical example of apoptotic regulation is the family of cysteine-dependent aspartate-directed proteases, or caspases. Activated proteases including caspases have also been implicated in cell death in response to chronic neurodegenerative diseases including Alzheimer's, Huntington's, and Multiple Sclerosis 4, 14, 3, 11, 7. In this protocol we describe the use of the NucView 488 caspase-3 substrate to measure the rate of caspase-3 mediated apoptosis in immortalized N19-oligodendrocyte (OLG) cell cultures 15, 5, following exposure to different extracellular stresses such as high concentrations of potassium or glutamate. The conditionally-immortalized N19-OLG cell line (representing the O2A progenitor) was obtained from Dr. Anthony Campagnoni (UCLA Semel Institute for Neuroscience) 15, 5, and has been previously used to study molecular mechanisms of myelin gene expression and signal transduction leading to OLG differentiation (e.g.6, 10). We have found this cell line to be robust with respect to transfection with exogenous myelin basic protein (MBP) constructs fused to either RFP or GFP (red or green fluorescent protein) 13, 12. Here, the N19-OLG cell cultures were treated with either 80 mM potassium chloride or 100 mM sodium glutamate to mimic axonal leakage into the extracellular matrix to induce apoptosis 9. We used a bi-functional caspase-3 substrate containing a DEVD (Asp-Glu-Val-Asp) caspase-3 recognition subunit and a DNA-binding dye 2. The substrate quickly enters the cytoplasm where it is cleaved by intracellular caspase-3. The dye, NucView 488 is released and enters the cell nucleus where it binds DNA and fluoresces green at 488 nm, signaling apoptosis. Use of the NucView 488 caspase-3 substrate allows for live-cell imaging in real-time 1, 10. In this video, we also describe the culturing and transfection of immortalized N19-OLG cells, as well as live-cell imaging techniques.
Neuroscience, Issue 59, myelin basic protein, apoptosis, neuroprotection, caspase-3, live-cell imaging, glia, oligodendrocytes
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
Play Button
A Multi-compartment CNS Neuron-glia Co-culture Microfluidic Platform
Authors: Jaewon Park, Hisami Koito, Jianrong Li, Arum Han.
Institutions: Texas A&M University (TAMU), Texas A&M University (TAMU).
We present a novel multi-compartment neuron co-culture microsystem platform for in vitro CNS axon-glia interaction research, capable of conducting up to six independent experiments in parallel for higher-throughput. We developed a new fabrication method to create microfluidic devices having both micro and macro scale structures within the same device through a single soft-lithography process, enabling mass fabrication with good repeatability. The multi-compartment microfluidic co-culture platform is composed of one soma compartment for neurons and six axon/glia compartments for oligodendrocytes (OLs). The soma compartment and axon/glia compartments are connected by arrays of axon-guiding microchannels that function as physical barriers to confine neuronal soma in the soma compartment, while allowing axons to grow into axon/glia compartments. OLs loaded into axon/glia compartments can interact only with axons but not with neuronal soma or dendrites, enabling localized axon-glia interaction studies. The microchannels also enabled fluidic isolation between compartments, allowing six independent experiments to be conducted on a single device for higher throughput. Soft-lithography using poly(dimethylsiloxane) (PDMS) is a commonly used technique in biomedical microdevices. Reservoirs on these devices are commonly defined by manual punching. Although simple, poor alignment and time consuming nature of the process makes this process not suitable when large numbers of reservoirs have to be repeatedly created. The newly developed method did not require manual punching of reservoirs, overcoming such limitations. First, seven reservoirs (depth: 3.5 mm) were made on a poly(methyl methacrylate) (PMMA) block using a micro-milling machine. Then, arrays of ridge microstructures, fabricated on a glass substrate, were hot-embossed against the PMMA block to define microchannels that connect the soma and axon/glia compartments. This process resulted in macro-scale reservoirs (3.5 mm) and micro-scale channels (2.5 μm) to coincide within a single PMMA master. A PDMS replica that served as a mold master was obtained using soft-lithography and the final PDMS device was replicated from this master. Primary neurons from E16-18 rats were loaded to the soma compartment and cultured for two weeks. After one week of cell culture, axons crossed microchannels and formed axonal only network layer inside axon/glia compartments. Axons grew uniformly throughout six axon/glia compartments and OLs from P1-2 rats were added to axon/glia compartments at 14 days in vitro for co-culture.
Biomedical Engineering, Issue 31, Neuron culture, neuron-glia interaction, microfluidics, cell culture microsystem
Play Button
Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable Neural Progenitor Cells
Authors: Sandra Meyer, Philipp Wörsdörfer, Katharina Günther, Marc Thier, Frank Edenhofer.
Institutions: University of Würzburg, University of Bonn, German Cancer Research Center, Heidelberg.
Generation of induced pluripotent stem cell (iPSCs) from adult skin fibroblasts and subsequent differentiation into somatic cells provides fascinating prospects for the derivation of autologous transplants that circumvent histocompatibility barriers. However, progression through a pluripotent state and subsequent complete differentiation into desired lineages remains a roadblock for the clinical translation of iPSC technology because of the associated neoplastic potential and genomic instability. Recently, we and others showed that somatic cells cannot only be converted into iPSCs but also into different types of multipotent somatic stem cells by using defined factors, thereby circumventing progression through the pluripotent state. In particular, the direct conversion of human fibroblasts into induced neural progenitor cells (iNPCs) heralds the possibility of a novel autologous cell source for various applications such as cell replacement, disease modeling and drug screening. Here, we describe the isolation of adult human primary fibroblasts by skin biopsy and their efficient direct conversion into iNPCs by timely restricted expression of Oct4, Sox2, Klf4, as well as c-Myc. Sox2-positive neuroepithelial colonies appear after 17 days of induction and iNPC lines can be established efficiently by monoclonal isolation and expansion. Precise adjustment of viral multiplicity of infection and supplementation of leukemia inhibitory factor during the induction phase represent critical factors to achieve conversion efficiencies of up to 0.2%. Thus far, patient-specific iNPC lines could be expanded for more than 12 passages and uniformly display morphological and molecular features of neural stem/progenitor cells, such as the expression of Nestin and Sox2. The iNPC lines can be differentiated into neurons and astrocytes as judged by staining against TUJ1 and GFAP, respectively. In conclusion, we report a robust protocol for the derivation and direct conversion of human fibroblasts into stably expandable neural progenitor cells that might provide a cellular source for biomedical applications such as autologous neural cell replacement and disease modeling.
Neuroscience, Issue 101, Direct conversion, lineage reprogramming, transgene-free reprogrammed cells, neural stem cells, transdifferentiation, neuronal differentiation, glial differentiation, stem cell biology, disease modeling, neural cell replacement, stem cell therapy.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.