JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Remission of collagen-induced arthritis through combination therapy of microfracture and transplantation of thermogel-encapsulated bone marrow mesenchymal stem cells.
.
PLoS ONE
PUBLISHED: 03-17-2015
The persistent inflammation of rheumatoid arthritis (RA) always leads to partial synovial hyperplasia and the destruction of articular cartilage. Bone marrow mesenchymal stem cells (BMMSCs) have been proven to possess immunosuppressive effects, and widely explored in the treatment of autoimmune diseases. However, poor inhibitory effect on local inflammatory state and limited capacity of preventing destruction of articular cartilage by systemic BMMSCs transplantation were observed. Herein, toward the classical type II collagen-induced arthritis in rats, the combination treatment of microfracture and in situ transplantation of thermogel-encapsulated BMMSCs was verified to obviously down-regulate the ratio of CD4+ to CD8+ T lymphocytes in peripheral blood. In addition, it resulted in the decreased levels of inflammatory cytokines, such as interleukin-1?, tumor necrosis factor-? and anti-collagen type II antibody, in the serum. Simultaneously, the combination therapy also could inhibit the proliferation of antigen specific lymphocytes and local joint inflammatory condition, and prevent the articular cartilage damage. The results indicated that the treatment programs could effectively stimulate the endogenous and exogenous BMMSCs to exhibit the immunosuppression and cartilage protection capability. This study provided a new therapeutic strategy for autoimmune inflammatory diseases, such as RA.
Authors: Markus T. Berninger, Gabriele Wexel, Ernst J. Rummeny, Andreas B. Imhoff, Martina Anton, Tobias D. Henning, Stephan Vogt.
Published: 05-21-2013
ABSTRACT
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6. Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11. The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12. Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11. Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect. In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22. The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit's bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit's knee joint will be described.
23 Related JoVE Articles!
Play Button
Induction and Monitoring of Adoptive Delayed-Type Hypersensitivity in Rats
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Delayed type hypersensitivity (DTH) is an inflammatory reaction mediated by CCR7- effector memory T lymphocytes that infiltrate the site of injection of an antigen against which the immune system has been primed. The inflammatory reaction is characterized by redness and swelling of the site of antigenic challenge. It is a convenient model to determine the in vivo efficacy of immunosuppressants. Cutaneous DTH can be induced either by adoptive transfer of antigen-specific T lymphocytes or by active immunization with an antigen, and subsequent intradermal challenge with the antigen to induce the inflammatory reaction in a given skin area. DTH responses can be induced to various antigens, for example ovalbumin, tuberculin, tetanus toxoid, or keyhole limpet hemocyanin. Such reactions can also be induced against autoantigen, for example to myelin basic protein (MBP) in rats with experimental autoimmune encephalomyelitis induced with MBP, an animal model for multiple sclerosis (1). Here we demonstrate how to induce an adoptive DTH reaction in Lewis rats. We will first stimulate ovalbumin-specific T cells in vitro and inject these activated cells intraperitoneally to naive rats. After allowing the cells to equilibrate in vivo for 2 days, we will challenge the rats with ovalbumin in the pinna of one ear, while the other ear wil receive saline. The inflammatory reaction will be visible 3-72 hours later and ear thickness will be measured as an indication of DTH severity.
Immunology, Issue 8, Rodent, Hypersensitivity, Mouse, Skin, Immune Reaction, Blood Draw, Serum, Video Protocol, Vaccination, Adjuvant
325
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
51064
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
51154
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Sequential In vivo Imaging of Osteogenic Stem/Progenitor Cells During Fracture Repair
Authors: Dongsu Park, Joel A. Spencer, Charles P. Lin, David T. Scadden.
Institutions: Harvard Stem Cell Institute, Harvard Medical School.
Bone turns over continuously and is highly regenerative following injury. Osteogenic stem/progenitor cells have long been hypothesized to exist, but in vivo demonstration of such cells has only recently been attained. Here, in vivo imaging techniques to investigate the role of endogenous osteogenic stem/progenitor cells (OSPCs) and their progeny in bone repair are provided. Using osteo-lineage cell tracing models and intravital imaging of induced microfractures in calvarial bone, OSPCs can be directly observed during the first few days after injury, in which critical events in the early repair process occur. Injury sites can be sequentially imaged revealing that OSPCs relocate to the injury, increase in number and differentiate into bone forming osteoblasts. These methods offer a means of investigating the role of stem cell-intrinsic and extrinsic molecular regulators for bone regeneration and repair.
Medicine, Issue 87, Osteogenic Stem Cells, In vivo Imaging, Lineage tracking, Bone regeneration, Fracture repair, Mx1.
51289
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
51556
Play Button
A Novel in vivo Gene Transfer Technique and in vitro Cell Based Assays for the Study of Bone Loss in Musculoskeletal Disorders
Authors: Dennis J. Wu, Neha Dixit, Erika Suzuki, Thanh Nguyen, Hyun Seock Shin, Jack Davis, Emanual Maverakis, Iannis E. Adamopoulos.
Institutions: University of California, Davis, Shriners Hospitals for Children - Northern California, University of California, Davis.
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
Medicine, Issue 88, osteoclast, arthritis, minicircle DNA, macrophages, cell culture, hydrodynamic delivery
51810
Play Button
High Throughput Characterization of Adult Stem Cells Engineered for Delivery of Therapeutic Factors for Neuroprotective Strategies
Authors: Anup D. Sharma, Pavel A. Brodskiy, Emma M. Petersen, Melih Dagdeviren, Eun-Ah Ye, Surya K. Mallapragada, Donald Sakaguchi.
Institutions: Iowa State University, Iowa State University, Iowa State University.
Mesenchymal stem cells (MSCs) derived from bone marrow are a powerful cellular resource and have been used in numerous studies as potential candidates to develop strategies for treating a variety of diseases. The purpose of this study was to develop and characterize MSCs as cellular vehicles engineered for delivery of therapeutic factors as part of a neuroprotective strategy for rescuing the damaged or diseased nervous system. In this study we used mouse MSCs that were genetically modified using lentiviral vectors, which encoded brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF), together with green fluorescent protein (GFP). Before proceeding with in vivo transplant studies it was important to characterize the engineered cells to determine whether or not the genetic modification altered aspects of normal cell behavior. Different culture substrates were examined for their ability to support cell adhesion, proliferation, survival, and cell migration of the four subpopulations of engineered MSCs. High content screening (HCS) was conducted and image analysis performed. Substrates examined included: poly-L-lysine, fibronectin, collagen type I, laminin, entactin-collagen IV-laminin (ECL). Ki67 immunolabeling was used to investigate cell proliferation and Propidium Iodide staining was used to investigate cell viability. Time-lapse imaging was conducted using a transmitted light/environmental chamber system on the high content screening system. Our results demonstrated that the different subpopulations of the genetically modified MSCs displayed similar behaviors that were in general comparable to that of the original, non-modified MSCs. The influence of different culture substrates on cell growth and cell migration was not dramatically different between groups comparing the different MSC subtypes, as well as culture substrates. This study provides an experimental strategy to rapidly characterize engineered stem cells and their behaviors before their application in long-term in vivo transplant studies for nervous system rescue and repair.
Medicine, Issue 95, Mesenchymal stem cells, high throughput screening, genetic modification, cell tracking, neurotrophic factors, high content screening, HCS, neuroprotection
52242
Play Button
Analyzing the Effects of Stromal Cells on the Recruitment of Leukocytes from Flow
Authors: Hafsa Munir, G. Ed Rainger, Gerard B. Nash, Helen McGettrick.
Institutions: University of Birmingham, University of Birmingham, University of Birmingham.
Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro “vascular” models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation.
Immunology, Issue 95, Endothelial cells, leukocytes, mesenchymal stromal cells, mesenchymal stem cells, co-culture, adhesion, inflammation, recruitment, flow based adhesion assay, Ibidi microslide, neutrophil
52480
Play Button
Establishment of a Human Multiple Myeloma Xenograft Model in the Chicken to Study Tumor Growth, Invasion and Angiogenesis
Authors: Agnieszka Martowicz, Johann Kern, Eberhard Gunsilius, Gerold Untergasser.
Institutions: Innsbruck Medical University, Oncotyrol GmbH, Tyrolean Cancer Research Institute, Karolinska Institute.
Multiple myeloma (MM), a malignant plasma cell disease, remains incurable and novel drugs are required to improve the prognosis of patients. Due to the lack of the bone microenvironment and auto/paracrine growth factors human MM cells are difficult to cultivate. Therefore, there is an urgent need to establish proper in vitro and in vivo culture systems to study the action of novel therapeutics on human MM cells. Here we present a model to grow human multiple myeloma cells in a complex 3D environment in vitro and in vivo. MM cell lines OPM-2 and RPMI-8226 were transfected to express the transgene GFP and were cultivated in the presence of human mesenchymal cells and collagen type-I matrix as three-dimensional spheroids. In addition, spheroids were grafted on the chorioallantoic membrane (CAM) of chicken embryos and tumor growth was monitored by stereo fluorescence microscopy. Both models allow the study of novel therapeutic drugs in a complex 3D environment and the quantification of the tumor cell mass after homogenization of grafts in a transgene-specific GFP-ELISA. Moreover, angiogenic responses of the host and invasion of tumor cells into the subjacent host tissue can be monitored daily by a stereo microscope and analyzed by immunohistochemical staining against human tumor cells (Ki-67, CD138, Vimentin) or host mural cells covering blood vessels (desmin/ASMA). In conclusion, the onplant system allows studying MM cell growth and angiogenesis in a complex 3D environment and enables screening for novel therapeutic compounds targeting survival and proliferation of MM cells.
Medicine, Issue 99, CAM, angiogenesis, mesenchymal cells, multiple myeloma, GFP, 3- dimensional tissue culture, xenografts, tumor
52665
Play Button
An Enzymatic Method to Rescue Mesenchymal Stem Cells from Clotted Bone Marrow Samples
Authors: Philipp Schlaefli, Alessandro Bertolo, Cherry Malonzo, Tobias Poetzel, Martin Baur, Frank Steffen, Jivko Stoyanov.
Institutions: Swiss Paraplegic Research, Swiss Paraplegic Centre, Lucerne Cantonal Hospital (LUKS), Vetsuisse Faculty, University of Zurich.
Mesenchymal stem cells (MSCs) - usually obtained from bone marrow - often require expansion culture. Our protocol uses clinical grade urokinase to degrade clots in the bone marrow and release MSCs for further use. This protocol provides a rapid and inexpensive alternative to bone marrow resampling. Bone marrow is a major source of MSCs, which are interesting for tissue engineering and autologous stem cell therapies. Upon withdrawal bone marrow may clot, as it comprises all of the hematopoietic system. The resulting clots contain also MSCs that are lost for expansion culture or direct stem cell therapy. We experienced that 74% of canine bone marrow samples contained clots and yielded less than half of the stem cell number expected from unclotted samples. Thus, we developed a protocol for enzymatic digestion of those clots to avoid labor-intense and costly bone marrow resampling. Urokinase - a clinically approved and readily available thrombolytic drug – clears away the bone marrow clots almost completely. As a consequence, treated bone marrow aspirates yield similar numbers of MSCs as unclotted samples. Also, after urokinase treatment the cells kept their metabolic activity and the ability to differentiate into chondrogenic, osteogenic and adipogenic lineages. Our protocol salvages clotted blood and bone marrow samples without affecting the quality of the cells. This obsoletes resampling, considerably reduces sampling costs and enables the use of clotted samples for research or therapy.
Developmental Biology, Issue 98, Mesenchymal stem cells, urokinase, bone marrow, translational research, tissue engineering, clot digest, thrombolytic drug, differentiation
52694
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
50959
Play Button
Establishment of a Surgically-induced Model in Mice to Investigate the Protective Role of Progranulin in Osteoarthritis
Authors: Yunpeng Zhao, Ben Liu, Chuan-ju Liu.
Institutions: NYU Hospital for Joint Diseases, New York University Medical Center.
Destabilization of medial meniscus (DMM) model is an important tool for studying the pathophysiological roles of numerous arthritis associated molecules in the pathogenesis of osteoarthritis (OA) in vivo. However, the detailed, especially the visualized protocol for establishing this complicated model in mice, is not available. Herein we took advantage of wildtype and progranulin (PGRN)-/- mice as examples to introduce a protocol for inducing DMM model in mice, and compared the onset of OA following establishment of this surgically induced model. The operations performed on mice were either sham operation, which just opened joint capsule, or DMM operation, which cut the menisco-tibial ligament and caused destabilization of medial meniscus. Osteoarthritis severity was evaluated using histological assay (e.g. Safranin O staining), expressions of OA-associated genes, degradation of cartilage extracellular matrix molecules, and osteophyte formation. DMM operation successfully induced OA initiation and progression in both wildtype and PGRN-/- mice, and loss of PGNR growth factor led to a more severe OA phenotype in this surgically induced model.
Bioengineering, Issue 84, Mouse, Cartilage, Surgery, Osteoarthritis, degenerative arthritis, progranulin, destabilization of medial meniscus (DMM)
50924
Play Button
Implantation of Ferumoxides Labeled Human Mesenchymal Stem Cells in Cartilage Defects
Authors: Alexander J. Nedopil, Lydia G. Mandrussow, Heike E. Daldrup-Link.
Institutions: Medical Center, University of California San Francisco.
The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo1, 2. In order to provide local retention and viability of transplanted MSCs in cartilage defects, a scaffold is needed, which also supports subsequent differentiation and proliferation. The architecture of the scaffold guides tissue formation and permits the extracellular matrix, produced by the stem cells, to expand. Previous investigations have shown that a 2% agarose scaffold may support the development of stable hyaline cartilage and does not induce immune responses3. Long term retention of transplanted stem cells in MASI is critical for cartilage regeneration. Labeling of MSCs with iron oxide nanoparticles allows for long-term in vivo tracking with non-invasive MR imaging techniques4. This presentation will demonstrate techniques for labeling MSCs with iron oxide nanoparticles, the generation of cell-agarose constructs and implantation of these constructs into cartilage defects. The labeled constructs can be tracked non-invasively with MR-Imaging.
Cellular Biology, Issue 38, Stem cells, cartilage defect, agarose, scaffold, tissue engineering, implantation, MASI
1793
Play Button
Reverse Total Shoulder Arthroplasty
Authors: Christopher J. Lenarz, Reuben Gobezie.
Institutions: Case Western Reserve University.
Reverse total shoulder arthroplasty was initially approved for use in rotator cuff arthropathy and well as chronic pseudoparalysis without arthritis in patients who were not appropriate for tendon transfer reconstructions. Traditional surgical options for these patients were limited and functional results were sub-optimal and at times catastrophic. The use of reverse shoulder arthroplasty has been found to effectively restore these patients function and relieve symptoms associated with their disease. The procedure can be done through two approaches, the deltopectoral or the superolateral. Complication rates associated with the use of the prosthesis have ranged from 8-60% with more recent reports trending lower as experienced is gained. Salvage options for a failed reverse shoulder prosthesis are limited and often have significant associated disability. Indications for the use of this prosthesis continue to be evaluated including its use for revision arthroplasty, proximal humeral fracture and tumor. Careful patient selection is essential because of the significant risks associated with the procedure.
Medicine, Issue 53, Reverse, Total, Shoulder, Arthroplasty, Rotator Cuff, Arthropathy, Arthritis, Glenoid, Humerus, Fracture
2281
Play Button
A 3D System for Culturing Human Articular Chondrocytes in Synovial Fluid
Authors: Joshua A. Brand, Timothy E. McAlindon, Li Zeng.
Institutions: Tufts University School of Medicine, Tufts Medical Center.
Cartilage destruction is a central pathological feature of osteoarthritis, a leading cause of disability in the US. Cartilage in the adult does not regenerate very efficiently in vivo; and as a result, osteoarthritis leads to irreversible cartilage loss and is accompanied by chronic pain and immobility 1,2. Cartilage tissue engineering offers promising potential to regenerate and restore tissue function. This technology typically involves seeding chondrocytes into natural or synthetic scaffolds and culturing the resulting 3D construct in a balanced medium over a period of time with a goal of engineering a biochemically and biomechanically mature tissue that can be transplanted into a defect site in vivo 3-6. Achieving an optimal condition for chondrocyte growth and matrix deposition is essential for the success of cartilage tissue engineering. In the native joint cavity, cartilage at the articular surface of the bone is bathed in synovial fluid. This clear and viscous fluid provides nutrients to the avascular articular cartilage and contains growth factors, cytokines and enzymes that are important for chondrocyte metabolism 7,8. Furthermore, synovial fluid facilitates low-friction movement between cartilaginous surfaces mainly through secreting two key components, hyaluronan and lubricin 9 10. In contrast, tissue engineered cartilage is most often cultured in artificial media. While these media are likely able to provide more defined conditions for studying chondrocyte metabolism, synovial fluid most accurately reflects the natural environment of which articular chondrocytes reside in. Indeed, synovial fluid has the advantage of being easy to obtain and store, and can often be regularly replenished by the body. Several groups have supplemented the culture medium with synovial fluid in growing human, bovine, rabbit and dog chondrocytes, but mostly used only low levels of synovial fluid (below 20%) 11-25. While chicken, horse and human chondrocytes have been cultured in the medium with higher percentage of synovial fluid, these culture systems were two-dimensional 26-28. Here we present our method of culturing human articular chondrocytes in a 3D system with a high percentage of synovial fluid (up to 100%) over a period of 21 days. In doing so, we overcame a major hurdle presented by the high viscosity of the synovial fluid. This system provides the possibility of studying human chondrocytes in synovial fluid in a 3D setting, which can be further combined with two other important factors (oxygen tension and mechanical loading) 29,30 that constitute the natural environment for cartilage to mimic the natural milieu for cartilage growth. Furthermore, This system may also be used for assaying synovial fluid activity on chondrocytes and provide a platform for developing cartilage regeneration technologies and therapeutic options for arthritis.
Cellular Biology, Issue 59, Chondrocytes, articular, human, synovial fluid, alginate bead, 3D culture
3587
Play Button
Differentiating Functional Roles of Gene Expression from Immune and Non-immune Cells in Mouse Colitis by Bone Marrow Transplantation
Authors: Hon Wai Koon, Samantha Ho, Michelle Cheng, Ryan Ichikawa, Charalabos Pothoulakis.
Institutions: The University of California Los Angeles, Los Angeles.
To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the recipient mice with bone marrow transplantation can be significantly altered. At the end of colitis experiments, the bone marrow derived cells in blood and bone marrow were labeled with antibodies against CD45.1 and CD45.2 and their quantitative ratio of existence could be used to evaluate the success of bone marrow transplantation by flow cytometry. Successful bone marrow transplantation should show a vast majority of donor genotype (in term of CD molecule marker) over recipient genotype in both the bone marrow and blood of recipient mice.
Immunology, Issue 68, Genetics, Cellular Biology, Physiology, Bone marrow transplantation, colitis, mice, irradiation
4208
Play Button
Mechanical Stimulation of Chondrocyte-agarose Hydrogels
Authors: James A. Kaupp, Joanna F. Weber, Stephen D. Waldman.
Institutions: Queen's University , Queen's University .
Articular cartilage suffers from a limited repair capacity when damaged by mechanical insult or degraded by disease, such as osteoarthritis. To remedy this deficiency, several medical interventions have been developed. One such method is to resurface the damaged area with tissue-engineered cartilage; however, the engineered tissue typically lacks the biochemical properties and durability of native cartilage, questioning its long-term survivability. This limits the application of cartilage tissue engineering to the repair of small focal defects, relying on the surrounding tissue to protect the implanted material. To improve the properties of the developed tissue, mechanical stimulation is a popular method utilized to enhance the synthesis of cartilaginous extracellular matrix as well as the resultant mechanical properties of the engineered tissue. Mechanical stimulation applies forces to the tissue constructs analogous to those experienced in vivo. This is based on the premise that the mechanical environment, in part, regulates the development and maintenance of native tissue1,2. The most commonly applied form of mechanical stimulation in cartilage tissue engineering is dynamic compression at physiologic strains of approximately 5-20% at a frequency of 1 Hz1,3. Several studies have investigated the effects of dynamic compression and have shown it to have a positive effect on chondrocyte metabolism and biosynthesis, ultimately affecting the functional properties of the developed tissue4-8. In this paper, we illustrate the method to mechanically stimulate chondrocyte-agarose hydrogel constructs under dynamic compression and analyze changes in biosynthesis through biochemical and radioisotope assays. This method can also be readily modified to assess any potentially induced changes in cellular response as a result of mechanical stimuli.
Cellular Biology, Issue 68, Tissue Engineering, Mechanical Stimulation, Chondrocytes, Agarose, Cartilage
4229
Play Button
Matrix-assisted Autologous Chondrocyte Transplantation for Remodeling and Repair of Chondral Defects in a Rabbit Model
Authors: Markus T. Berninger, Gabriele Wexel, Ernst J. Rummeny, Andreas B. Imhoff, Martina Anton, Tobias D. Henning, Stephan Vogt.
Institutions: Klinikum rechts der Isar der Technischen Universität München, Klinikum rechts der Isar der Technischen Universität München, Klinikum rechts der Isar der Technischen Universität München, Uniklinik Köln.
Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration 1. Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery 2-4. Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies. The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) 5. Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation 6. In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular 7-9. MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration 10. The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics 11. The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit's knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.
Biomedical Engineering, Issue 75, Medicine, Anatomy, Physiology, Cellular Biology, Molecular Biology, Tissue Engineering, Surgery, Autologous chondrocyte implantation, matrix-assisted, matrix, collagen scaffold, chondral lesion, cartilage, rabbit, experimental, cartilage defects, cartilage repair, regenerative therapy, chondrocytes, cell culture, isolation, transplantation, animal model
4422
Play Button
Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
Authors: Brendan Carvalho, David J Clark, David Yeomans, Martin S Angst.
Institutions: Stanford University School of Medicine .
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).1 We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content (Anesth Analg 2010; 111:1452-9).2
Medicine, Issue 68, Biochemistry, Anatomy, Physiology, Cytokines, Cesarean Section, Wound Healing, Wounds and Injuries, Surgical Procedures, Operative, Surgical wound, Exudate, cytokines, Substance P, Interleukin 10, Interleukin 6, Nerve growth factor, Prostaglandin E2, Cesarean, Analgesia
50133
Play Button
Design of a Biaxial Mechanical Loading Bioreactor for Tissue Engineering
Authors: Bahar Bilgen, Danielle Chu, Robert Stefani, Roy K. Aaron.
Institutions: The Warren Alpert Brown Medical School of Brown University and the Rhode Island Hospital, VA Medical Center, Providence, RI, University of Texas Southwestern Medical Center .
We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0.15% to 0.25% full scale.
Bioengineering, Issue 74, Biomedical Engineering, Biophysics, Cellular Biology, Medicine, Anatomy, Physiology, Cell Engineering, Bioreactors, Culture Techniques, Cell Engineering, Tissue Engineering, compression loads, shear loads, Tissues, bioreactor, mechanical loading, compression, shear, musculoskeletal, cartilage, bone, transplantation, cell culture
50387
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
An Organotypic High Throughput System for Characterization of Drug Sensitivity of Primary Multiple Myeloma Cells
Authors: Ariosto Silva, Timothy Jacobson, Mark Meads, Allison Distler, Kenneth Shain.
Institutions: H. Lee Moffitt Cancer Center and Research Institute.
In this work we describe a novel approach that combines ex vivo drug sensitivity assays and digital image analysis to estimate chemosensitivity and heterogeneity of patient-derived multiple myeloma (MM) cells. This approach consists in seeding primary MM cells freshly extracted from bone marrow aspirates into microfluidic chambers implemented in multi-well plates, each consisting of a reconstruction of the bone marrow microenvironment, including extracellular matrix (collagen or basement membrane matrix) and stroma (patient-derived mesenchymal stem cells) or human-derived endothelial cells (HUVECs). The chambers are drugged with different agents and concentrations, and are imaged sequentially for 96 hr through bright field microscopy, in a motorized microscope equipped with a digital camera. Digital image analysis software detects live and dead cells from presence or absence of membrane motion, and generates curves of change in viability as a function of drug concentration and exposure time. We use a computational model to determine the parameters of chemosensitivity of the tumor population to each drug, as well as the number of sub-populations present as a measure of tumor heterogeneity. These patient-tailored models can then be used to simulate therapeutic regimens and estimate clinical response.
Medicine, Issue 101, Multiple myeloma, drug sensitivity, evolution of drug resistance, computational modeling, decision support system, personalized medicine
53070
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.