JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of salmonella species using PCR.
.
PLoS ONE
PUBLISHED: 03-17-2015
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.
Authors: John J. Maurer, Margie D. Lee, Ying Cheng, Adriana Pedroso.
Published: 07-22-2011
ABSTRACT
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype. We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium. Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.
22 Related JoVE Articles!
Play Button
Loop-mediated Isothermal Amplification (LAMP) Assays for the Species-specific Detection of Eimeria that Infect Chickens
Authors: Christopher P. Barkway, Rebecca L. Pocock, Vladimir Vrba, Damer P. Blake.
Institutions: Royal Veterinary College, London, Research Institute of Biopharmacy and Veterinary Drugs.
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.
Infection, Issue 96, Loop-mediated isothermal amplification, LAMP, Coccidiosis, Eimeria, Chickens, Diagnostics, Field tools
52552
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
A Protocol to Infect Caenorhabditis elegans with Salmonella typhimurium
Authors: Jiuli Zhang, Kailiang Jia.
Institutions: Florida Atlantic University.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.
Immunology, Issue 88, C. elegans, Salmonella typhimurium, autophagy, infection, pathogen, host, RNAi
51703
Play Button
High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages
Authors: Jing Wu, Roberta Pugh, Richard C. Laughlin, Helene Andrews-Polymenis, Michael McClelland, Andreas J. Bäumler, L. Garry Adams.
Institutions: Texas A&M University, Texas A&M University System Health Science Center, University of California, Irvine, University of California, Davis.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.
Infectious Diseases, Issue 90, Salmonella enterica Typhimurium, association, invasion, replication, phenotype, intracellular pathogens, macrophages
51759
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
52104
Play Button
Detection of Foodborne Bacterial Pathogens from Individual Filth Flies
Authors: Monica Pava-Ripoll, Rachel E.G. Pearson, Amy K. Miller, George C. Ziobro.
Institutions: U.S. Food and Drug Administration.
There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how the food was contaminated when performing foodborne outbreak investigations.
Environmental Sciences, Issue 96, Synanthropy, filth flies, Cronobacter, Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, shiga-toxigenic E. coli, STEC, PCR-based methods, foodborne illness, foodborne outbreak investigations.
52372
Play Button
Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs
Authors: Wilson Wong, Ryan Farr, Mugdha Joglekar, Andrzej Januszewski, Anandwardhan Hardikar.
Institutions: The University of Sydney, The University of Sydney.
Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput.
Molecular Biology, Issue 98, microRNA, ncRNA, probe-based assays, high-throughput PCR, Nanofluidics / Open Arrays, reverse-transcription, pre-amplification, qPCR
52586
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
51170
Play Button
Detection of Live Escherichia coli O157:H7 Cells by PMA-qPCR
Authors: Baoguang Li, Zonglin Hu, Christopher A. Elkins.
Institutions: Food and Drug Administration.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.
Microbiology, Issue 84, Propidium monoazide (PMA), real-time PCR, E. coli O157:H7, pathogen, selective detection, live cells
50967
Play Button
Chronic Salmonella Infected Mouse Model
Authors: Shaoping Wu, Rong Lu, Yong-guo Zhang, Jun Sun.
Institutions: University of Rochester.
The bacterial infected mouse model is a powerful model system for studying areas such as infection, inflammation, immunology, signal transduction, and tumorigenesis. Many researchers have taken advantage of the colitis induced by Salmonella typhimurium for the studies on the early phase of inflammation and infection. However, only few reports are on the chronic infection in vivo. Mice with Salmonella persistent existence in the gastrointestinal tract allow us to explore the long-term host-bacterial interaction, signal transduction, and tumorigenesis. We have established a chronic bacterial infected mouse model with Salmonella typhimurium colonization in the mouse intestine over 6 months. To use this system, it is necessary for the researcher to learn how to prepare the bacterial culture and gavage the animals. We detail a methodology for prepare bacterial culture and gavage mice. We also show how to detect the Salmonella persistence in the gastrointestinal tract. Overall, this protocol will aid researchers using the bacterial infected mouse model to address fundamentally important biological and microbiological questions.
Microbiology, Issue 39, Salmonella, intestine, colitis, chronic infection, mouse model
1947
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
2534
Play Button
Use of Fluorescent Immuno-Chemistry for the detection of Edwardsiella ictaluri in channel catfish (I. punctatus) samples
Authors: Simon Menanteau-Ledouble, Mark Lawrence.
Institutions: Mississippi State University.
While Edwardsiella ictaluri is a major pathogen of channel catfish Ictalurus punctatus and has been discovered nearly three decades ago 1,2, so far, to the best of these authors' knowledge, no method has been developed to allow for the in situ visualization of the bacteria in histological sections. While bacterial localization has been determined in vivo in previous studies using plate counts 3, radiometric labeled 4, or bioluminescent bacteria 5, most of these studies have only been performed at the gross organ level, with one exception 6. This limitation is of particular concern because E. ictaluri has a complex infection cycle 1,7, and it has a variety of virulence factors 8,9. The complex interaction of E. ictaluri with its host is similar in many respects to Salmonella typhi 10, which is in the same taxonomic family. Here we describe a technique allowing for the detection of bacteria using indirect immuno-histochemistry using the monoclonal Ed9 antibody described by Ainsworth et al.11. Briefly, a blocking serum is applied to paraffin embedded histological sections to prevent non-specific biding. Then, the sections are incubated with the primary antibody: E. ictaluri specific monoclonal antibody Ed9. Excess antibodies are rinsed away and the FitC labeled secondary antibodies are added. After rinsing, the sections are mounted with a fluorescent specific mounting medium. This allowed for the detection of E. ictaluri in situ in histological sections of channel catfish tissues.
Immunology, Issue 51, immunohistochemistry, histology, Edwardsiella ictaluri, enteric septicemia of channel catfish, Fish, Catfish, Ictalurus punctatus
2687
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
2910
Play Button
Optimized PCR-based Detection of Mycoplasma
Authors: Paige L. Dobrovolny, Dan Bess.
Institutions: Sigma-Aldrich.
The maintenance of contamination-free cell lines is essential to cell-based research. Among the biggest contaminant concerns are mycoplasma contamination. Although mycoplasma do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including altered metabolism, slowed proliferation and chromosomal aberrations. In short, mycoplasma contamination compromises the value of those cell lines in providing accurate data for life science research. The sources of mycoplasma contamination in the laboratory are very challenging to completely control. As certain mycoplasma species are found on human skin, they can be introduced through poor aseptic technique. Additionally, they can come from contaminated supplements such as fetal bovine serum, and most importantly from other contaminated cell cultures. Once mycoplasma contaminates a culture, it can quickly spread to contaminate other areas of the lab. Strict adherence to good laboratory practices such as good aseptic technique are key, and routine testing for mycoplasma is highly recommended for successful control of mycoplasma contamination. PCR-based detection of mycoplasma has become a very popular method for routine cell line maintenance. PCR-based detection methods are highly sensitive and can provide rapid results, which allows researchers to respond quickly to isolate and eliminate contamination once it is detected in comparison to the time required using microbiological techniques. The LookOut Mycoplasma PCR Detection Kit is highly sensitive, with a detection limit of only 2 genomes per μl. Taking advantage of the highly specific JumpStart Taq DNA Polymerase and a proprietary primer design, false positives are greatly reduced. The convenient 8-tube format, strips pre-coated with dNTPs, and associated primers helps increase the throughput to meet the needs of customers with larger collections of cell lines. Given the extreme sensitivity of the kit, great care must be taken to prevent inadvertent contamination of samples and reagents. The step-by-step protocol we demonstrate highlights the precautions and practices required for reliable mycoplasma detection. We also show and discuss typical results and their interpretation. Our goal is to ensure the success of researchers using the LookOut Mycoplasma PCR Detection Kit.
Microbiology, Issue 52, Mycoplasma detection, mycoplasma contamination, cell culture, sigma mycoplasma detection, acholeplasma contamination, polymerase chain reaction, PCR
3057
Play Button
Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): a Method for Bacterial Small RNA Detection
Authors: Kelly L. Robertson, Gary J. Vora.
Institutions: Naval Research Laboratory.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination1,2, cellular identification and gene expression3,4, monitoring viral multiplication in infected cells5, and bacterial community analysis and enumeration6. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (Tm) of these analogs for natural nucleic acids7,8. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence9,10. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes7,11 and have been successfully used to detect eukaryotic mRNA12 and viral RNA in mammalian cells5. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes13. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).
Immunology, Issue 59, fluorescence in situ hybridization, FISH, flow cytometry, locked nucleic acid, sRNA, Vibrio
3655
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
50713
Play Button
Pairwise Growth Competition Assay for Determining the Replication Fitness of Human Immunodeficiency Viruses
Authors: Siriphan Manocheewa, Erinn C. Lanxon-Cookson, Yi Liu, J. Victor Swain, Jan McClure, Ushnal Rao, Brandon Maust, Wenjie Deng, Justine E. Sunshine, Moon Kim, Morgane Rolland, James I. Mullins.
Institutions: University of Washington, University of Washington, Walter Reed Army Institute of Research, Henry M. Jackson Foundation.
In vitro fitness assays are essential tools for determining viral replication fitness for viruses such as HIV-1. Various measurements have been used to extrapolate viral replication fitness, ranging from the number of viral particles per infectious unit, growth rate in cell culture, and relative fitness derived from multiple-cycle growth competition assays. Growth competition assays provide a particularly sensitive measurement of fitness since the viruses are competing for cellular targets under identical growth conditions. There are several experimental factors to consider when conducting growth competition assays, including the multiplicity of infection (MOI), sampling times, and viral detection and fitness calculation methods. Each factor can affect the end result and hence must be considered carefully during the experimental design. The protocol presented here includes steps from constructing a new recombinant HIV-1 clone to performing growth competition assays and analyzing the experimental results. This protocol utilizes experimental parameter values previously shown to yield consistent and robust results. Alternatives are discussed, as some parameters need to be adjusted according to the cell type and viruses being studied. The protocol contains two alternative viral detection methods to provide flexibility as the availability of instruments, reagents and expertise varies between laboratories.
Immunology, Issue 99, HIV-1, Recombinant, Mutagenesis, Viral replication fitness, Growth competition, Fitness calculation
52610
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.