JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Platelet count and early outcome in patients with spontaneous cerebellar hemorrhage: a retrospective study.
.
PLoS ONE
PUBLISHED: 03-18-2015
The importance of coagulation, hematology, and biochemical variables have been investigated in the stroke population but have not been systemically surveyed in cerebellar hemorrhage (CH) population. The aim of the study was to explore the predictive value of these factors for early outcome in this population.
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Published: 07-31-2014
ABSTRACT
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
21 Related JoVE Articles!
Play Button
A Murine Model of Subarachnoid Hemorrhage
Authors: Kathrin Schüller, Dominik Bühler, Nikolaus Plesnila.
Institutions: University of Munich Medical Center.
In this video publication a standardized mouse model of subarachnoid hemorrhage (SAH) is presented. Bleeding is induced by endovascular Circle of Willis perforation (CWp) and proven by intracranial pressure (ICP) monitoring. Thereby a homogenous blood distribution in subarachnoid spaces surrounding the arterial circulation and cerebellar fissures is achieved. Animal physiology is maintained by intubation, mechanical ventilation, and continuous on-line monitoring of various physiological and cardiovascular parameters: body temperature, systemic blood pressure, heart rate, and hemoglobin saturation. Thereby the cerebral perfusion pressure can be tightly monitored resulting in a less variable volume of extravasated blood. This allows a better standardization of endovascular filament perforation in mice and makes the whole model highly reproducible. Thus it is readily available for pharmacological and pathophysiological studies in wild type and genetically altered mice.
Medicine, Issue 81, Nervous System Diseases, Subarachnoid hemorrhage (SAH), mouse model, filament perforation, intracranial pressure monitoring, blood distribution, surgical technique
50845
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
225
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
50173
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
50418
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Intrastriatal Injection of Autologous Blood or Clostridial Collagenase as Murine Models of Intracerebral Hemorrhage
Authors: Beilei Lei, Huaxin Sheng, Haichen Wang, Christopher D. Lascola, David S. Warner, Daniel T. Laskowitz, Michael L. James.
Institutions: Duke University, Duke University, Duke University, Duke University.
Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies.
Medicine, Issue 89, intracerebral hemorrhage, mouse, preclinical, autologous blood, collagenase, neuroscience, stroke, brain injury, basal ganglia
51439
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
52132
Play Button
Preparation and Pathogen Inactivation of Double Dose Buffy Coat Platelet Products using the INTERCEPT Blood System
Authors: Mohammad R. Abedi, Ann-Charlotte Doverud.
Institutions: Örebro University Hospital.
Blood centers are faced with many challenges including maximizing production yield from the blood product donations they receive as well as ensuring the highest possible level of safety for transfusion patients, including protection from transfusion transmitted diseases. This must be accomplished in a fiscally responsible manner which minimizes operating expenses including consumables, equipment, waste, and personnel costs, among others. Several methods are available to produce platelet concentrates for transfusion. One of the most common is the buffy coat method in which a single therapeutic platelet unit (≥ 2.0 x1011 platelets per unit or per local regulations) is prepared by pooling the buffy coat layer from up to six whole blood donations. A procedure for producing "double dose" whole blood derived platelets has only recently been developed. Presented here is a novel method for preparing double dose whole blood derived platelet concentrates from pools of 7 buffy coats and subsequently treating the double dose units with the INTERCEPT Blood System for pathogen inactivation. INTERCEPT was developed to inactivate viruses, bacteria, parasites, and contaminating donor white cells which may be present in donated blood. Pairing INTERCEPT with the double dose buffy coat method by utilizing the INTERCEPT Processing Set with Dual Storage Containers (the "DS set"), allows blood centers to treat each of their double dose units in a single pathogen inactivation processing set, thereby maximizing patient safety while minimizing costs. The double dose buffy coat method requires fewer buffy coats and reduces the use of consumables by up to 50% (e.g. pooling sets, filter sets, platelet additive solution, and sterile connection wafers) compared to preparation and treatment of single dose buffy coat platelet units. Other cost savings include less waste, less equipment maintenance, lower power requirements, reduced personnel time, and lower collection cost compared to the apheresis technique.
Medicine, Issue 70, Immunology, Hematology, Infectious Disease, Pathology, pathogen inactivation, pathogen reduction, double-dose platelets, INTERCEPT Blood System, amotosalen, UVA, platelet, blood processing, buffy coat, IBS, transfusion
4414
Play Button
A Simple Protocol for Platelet-mediated Clumping of Plasmodium falciparum-infected Erythrocytes in a Resource Poor Setting
Authors: Dumizulu L. Tembo, Jacqui Montgomery, Alister G. Craig, Samuel C. Wassmer.
Institutions: Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, New York University School of Medicine.
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood. Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9. One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.
Infection, Issue 75, Infectious Diseases, Immunology, Medicine, Microbiology, Molecular Biology, Cellular Biology, Parasitology, Clumping, platelets, Plasmodium falciparum, CD36, malaria, malarial infections, parasites, red blood cells, plasma, limited resources, clinical techniques, assay
4316
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
227
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
231
Play Button
BioMEMS and Cellular Biology: Perspectives and Applications
Authors: Albert Folch.
Institutions: University of Washington.
The ability to culture cells has revolutionized hypothesis testing in basic cell and molecular biology research. It has become a standard methodology in drug screening, toxicology, and clinical assays, and is increasingly used in regenerative medicine. However, the traditional cell culture methodology essentially consisting of the immersion of a large population of cells in a homogeneous fluid medium and on a homogeneous flat substrate has become increasingly limiting both from a fundamental and practical perspective. Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, and the medium composition, as well as the neighboring cell type in the surrounding cellular microenvironment. Additionally, microtechnology is conceptually well-suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. In this interview, Albert Folch explains these limitations, how they can be overcome with soft lithography and microfluidics, and describes some relevant examples of research in his lab and future directions.
Biomedical Engineering, Issue 8, BioMEMS, Soft Lithography, Microfluidics, Agrin, Axon Guidance, Olfaction, Interview
300
Play Button
Understanding Cerebellar Pattern Formation
Authors: Kathleen J. Millen.
Institutions: University of Chicago.
Neuroscience, Issue 9, Brain, Development, Neuron
407
Play Button
Determining Cell Number During Cell Culture using the Scepter Cell Counter
Authors: Kathleen Ongena, Chandreyee Das, Janet L. Smith, Sónia Gil, Grace Johnston.
Institutions: Millipore Inc.
Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measurements of cellular responses. Despite this need for speed and accuracy in cell counting, 71% of 400 researchers surveyed1 who count cells using a hemocytometer. While hemocytometry is inexpensive, it is laborious and subject to user bias and misuse, which results in inaccurate counts. Hemocytometers are made of special optical glass on which cell suspensions are loaded in specified volumes and counted under a microscope. Sources of errors in hemocytometry include: uneven cell distribution in the sample, too many or too few cells in the sample, subjective decisions as to whether a given cell falls within the defined counting area, contamination of the hemocytometer, user-to-user variation, and variation of hemocytometer filling rate2. To alleviate the tedium associated with manual counting, 29% of researchers count cells using automated cell counting devices; these include vision-based counters, systems that detect cells using the Coulter principle, or flow cytometry1. For most researchers, the main barrier to using an automated system is the price associated with these large benchtop instruments1. The Scepter cell counter is an automated handheld device that offers the automation and accuracy of Coulter counting at a relatively low cost. The system employs the Coulter principle of impedance-based particle detection3 in a miniaturized format using a combination of analog and digital hardware for sensing, signal processing, data storage, and graphical display. The disposable tip is engineered with a microfabricated, cell- sensing zone that enables discrimination by cell size and cell volume at sub-micron and sub-picoliter resolution. Enhanced with precision liquid-handling channels and electronics, the Scepter cell counter reports cell population statistics graphically displayed as a histogram.
Cellular Biology, Issue 45, Scepter, cell counting, cell culture, hemocytometer, Coulter, Impedance-based particle detection
2204
Play Button
Microvascular Decompression: Salient Surgical Principles and Technical Nuances
Authors: Jonathan Forbes, Calvin Cooper, Walter Jermakowicz, Joseph Neimat, Peter Konrad.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center.
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. Surgical options for management include ablative procedures (e.g., radiosurgery, percutaneous radiofrequency lesioning, balloon compression, glycerol rhizolysis, etc.) and microvascular decompression. Ablative procedures fail to address the root cause of the disorder and are less effective at preventing recurrence of symptoms over the long term than microvascular decompression. However, microvascular decompression is inherently more invasive than ablative procedures and is associated with increased surgical risks. Previous studies have demonstrated a correlation between surgeon experience and patient outcome in microvascular decompression. In this series of 59 patients operated on by two neurosurgeons (JSN and PEK) since 2006, 93% of patients demonstrated substantial improvement in their trigeminal neuralgia following the procedure—with follow-up ranging from 6 weeks to 2 years. Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
Medicine, Issue 53, microvascular, decompression, trigeminal, neuralgia, operation, video
2590
Play Button
Assessment and Evaluation of the High Risk Neonate: The NICU Network Neurobehavioral Scale
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Institutions: Brown University, Women & Infants Hospital of Rhode Island, University of Massachusetts, Boston.
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
Behavior, Issue 90, NICU Network Neurobehavioral Scale, NNNS, High risk infant, Assessment, Evaluation, Prediction, Long term outcome
3368
Play Button
Modulating Cognition Using Transcranial Direct Current Stimulation of the Cerebellum
Authors: Paul A. Pope.
Institutions: University of Birmingham.
Numerous studies have emerged recently that demonstrate the possibility of modulating, and in some cases enhancing, cognitive processes by exciting brain regions involved in working memory and attention using transcranial electrical brain stimulation. Some researchers now believe the cerebellum supports cognition, possibly via a remote neuromodulatory effect on the prefrontal cortex. This paper describes a procedure for investigating a role for the cerebellum in cognition using transcranial direct current stimulation (tDCS), and a selection of information-processing tasks of varying task difficulty, which have previously been shown to involve working memory, attention and cerebellar functioning. One task is called the Paced Auditory Serial Addition Task (PASAT) and the other a novel variant of this task called the Paced Auditory Serial Subtraction Task (PASST). A verb generation task and its two controls (noun and verb reading) were also investigated. All five tasks were performed by three separate groups of participants, before and after the modulation of cortico-cerebellar connectivity using anodal, cathodal or sham tDCS over the right cerebellar cortex. The procedure demonstrates how performance (accuracy, verbal response latency and variability) could be selectively improved after cathodal stimulation, but only during tasks that the participants rated as difficult, and not easy. Performance was unchanged by anodal or sham stimulation. These findings demonstrate a role for the cerebellum in cognition, whereby activity in the left prefrontal cortex is likely dis-inhibited by cathodal tDCS over the right cerebellar cortex. Transcranial brain stimulation is growing in popularity in various labs and clinics. However, the after-effects of tDCS are inconsistent between individuals and not always polarity-specific, and may even be task- or load-specific, all of which requires further study. Future efforts might also be guided towards neuro-enhancement in cerebellar patients presenting with cognitive impairment once a better understanding of brain stimulation mechanisms has emerged.
Behavior, Issue 96, Cognition, working memory, tDCS, cerebellum, brain stimulation, neuro-modulation, neuro-enhancement
52302
Play Button
Autologous Blood Injection to Model Spontaneous Intracerebral Hemorrhage in Mice
Authors: Lauren H. Sansing, Scott E. Kasner, Louise McCullough, Puneet Agarwal, Frank A. Welsh, Katalin Kariko.
Institutions: University of Connecticut Health Center, School of Medicine, University of Pennsylvania, Hartford Hospital, School of Medicine, University of Pennsylvania.
Investigation of the pathophysiology of injury after intracerebral hemorrhage (ICH) requires a reproducible animal model. While ICH accounts for 10-15% of all strokes, there remains no specific effective therapy. The autologous blood injection model in mice involves the stereotaxic injection of arterial blood into the basal ganglia mimicking a spontaneous hypertensive hemorrhage in man. The response to hemorrhage can then be studied in vivo and the neurobehavioral deficits quantified, allowing for description of the ensuing pathology and the testing of potential therapeutic agents. The procedure described in this protocol uses the double injection technique to minimize risk of blood reflux up the needle track, no anticoagulants in the pumping system, and eliminates all dead space and expandable tubing in the system.
Neuroscience, Issue 54, stroke, intracerebral hemorrhage, mice, animal model
2618
Play Button
A Low Mortality Rat Model to Assess Delayed Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage
Authors: Rahul V. Dudhani, Michele Kyle, Christina Dedeo, Margaret Riordan, Eric M. Deshaies.
Institutions: SUNY Upstate Medical University, SUNY Upstate Medical University.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment. Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer's statistical analysis. Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm. Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.
Medicine, Issue 71, Anatomy, Physiology, Neurobiology, Neuroscience, Immunology, Surgery, Aneurysm, cerebral, hemorrhage, model, mortality, rat, rodent, subarachnoid, vasospasm, animal model
4157
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.