JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Relationship between television viewing and language delay in toddlers: evidence from a Korea national cross-sectional survey.
PUBLISHED: 03-19-2015
This study investigated the relationship between 2-year-old children's exposure to TV and language delay.
One of the defining characteristics of autism spectrum disorder (ASD) is difficulty with language and communication.1 Children with ASD's onset of speaking is usually delayed, and many children with ASD consistently produce language less frequently and of lower lexical and grammatical complexity than their typically developing (TD) peers.6,8,12,23 However, children with ASD also exhibit a significant social deficit, and researchers and clinicians continue to debate the extent to which the deficits in social interaction account for or contribute to the deficits in language production.5,14,19,25 Standardized assessments of language in children with ASD usually do include a comprehension component; however, many such comprehension tasks assess just one aspect of language (e.g., vocabulary),5 or include a significant motor component (e.g., pointing, act-out), and/or require children to deliberately choose between a number of alternatives. These last two behaviors are known to also be challenging to children with ASD.7,12,13,16 We present a method which can assess the language comprehension of young typically developing children (9-36 months) and children with autism.2,4,9,11,22 This method, Portable Intermodal Preferential Looking (P-IPL), projects side-by-side video images from a laptop onto a portable screen. The video images are paired first with a 'baseline' (nondirecting) audio, and then presented again paired with a 'test' linguistic audio that matches only one of the video images. Children's eye movements while watching the video are filmed and later coded. Children who understand the linguistic audio will look more quickly to, and longer at, the video that matches the linguistic audio.2,4,11,18,22,26 This paradigm includes a number of components that have recently been miniaturized (projector, camcorder, digitizer) to enable portability and easy setup in children's homes. This is a crucial point for assessing young children with ASD, who are frequently uncomfortable in new (e.g., laboratory) settings. Videos can be created to assess a wide range of specific components of linguistic knowledge, such as Subject-Verb-Object word order, wh-questions, and tense/aspect suffixes on verbs; videos can also assess principles of word learning such as a noun bias, a shape bias, and syntactic bootstrapping.10,14,17,21,24 Videos include characters and speech that are visually and acoustically salient and well tolerated by children with ASD.
23 Related JoVE Articles!
Play Button
Investigating the Microbial Community in the Termite Hindgut - Interview
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter explains why the termite-gut microbial community is an excellent system for studying the complex interactions between microbes. The symbiotic relationship existing between the host insect and lignocellulose-degrading gut microbes is explained, as well as the industrial uses of these microbes for degrading plant biomass and generating biofuels.
Microbiology, issue 4, microbial community, diversity
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
Authors: Patrick De Boever, Tijs Louwies, Eline Provost, Luc Int Panis, Tim S. Nawrot.
Institutions: Flemish Institute for Technological Research (VITO), Hasselt University, Hasselt University, Leuven University.
The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age. Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors. The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.
Medicine, Issue 92, retina, microvasculature, image analysis, Central Retinal Arteriolar Equivalent, Central Retinal Venular Equivalent, air pollution, particulate matter, black carbon
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Measuring Attentional Biases for Threat in Children and Adults
Authors: Vanessa LoBue.
Institutions: Rutgers University.
Investigators have long been interested in the human propensity for the rapid detection of threatening stimuli. However, until recently, research in this domain has focused almost exclusively on adult participants, completely ignoring the topic of threat detection over the course of development. One of the biggest reasons for the lack of developmental work in this area is likely the absence of a reliable paradigm that can measure perceptual biases for threat in children. To address this issue, we recently designed a modified visual search paradigm similar to the standard adult paradigm that is appropriate for studying threat detection in preschool-aged participants. Here we describe this new procedure. In the general paradigm, we present participants with matrices of color photographs, and ask them to find and touch a target on the screen. Latency to touch the target is recorded. Using a touch-screen monitor makes the procedure simple and easy, allowing us to collect data in participants ranging from 3 years of age to adults. Thus far, the paradigm has consistently shown that both adults and children detect threatening stimuli (e.g., snakes, spiders, angry/fearful faces) more quickly than neutral stimuli (e.g., flowers, mushrooms, happy/neutral faces). Altogether, this procedure provides an important new tool for researchers interested in studying the development of attentional biases for threat.
Behavior, Issue 92, Detection, threat, attention, attentional bias, anxiety, visual search
Play Button
A Cognitive Paradigm to Investigate Interference in Working Memory by Distractions and Interruptions
Authors: Jacki Janowich, Jyoti Mishra, Adam Gazzaley.
Institutions: University of New Mexico, University of California, San Francisco, University of California, San Francisco, University of California, San Francisco.
Goal-directed behavior is often impaired by interference from the external environment, either in the form of distraction by irrelevant information that one attempts to ignore, or by interrupting information that demands attention as part of another (secondary) task goal. Both forms of external interference have been shown to detrimentally impact the ability to maintain information in working memory (WM). Emerging evidence suggests that these different types of external interference exert different effects on behavior and may be mediated by distinct neural mechanisms. Better characterizing the distinct neuro-behavioral impact of irrelevant distractions versus attended interruptions is essential for advancing an understanding of top-down attention, resolution of external interference, and how these abilities become degraded in healthy aging and in neuropsychiatric conditions. This manuscript describes a novel cognitive paradigm developed the Gazzaley lab that has now been modified into several distinct versions used to elucidate behavioral and neural correlates of interference, by to-be-ignored distractors versus to-be-attended interruptors. Details are provided on variants of this paradigm for investigating interference in visual and auditory modalities, at multiple levels of stimulus complexity, and with experimental timing optimized for electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) studies. In addition, data from younger and older adult participants obtained using this paradigm is reviewed and discussed in the context of its relationship with the broader literatures on external interference and age-related neuro-behavioral changes in resolving interference in working memory.
Behavior, Issue 101, Attention, interference, distraction, interruption, working memory, aging, multi-tasking, top-down attention, EEG, fMRI
Play Button
Practical Methodology of Cognitive Tasks Within a Navigational Assessment
Authors: Manon Robillard, Chantal Mayer-Crittenden, Annie Roy-Charland, Michèle Minor-Corriveau, Roxanne Bélanger.
Institutions: Laurentian University, Laurentian University.
This paper describes an approach for measuring navigation accuracy relative to cognitive skills. The methodology behind the assessment will thus be clearly outlined in a step-by-step manner. Navigational skills are important when trying to find symbols within a speech-generating device (SGD) that has a dynamic screen and taxonomical organization. The following skills have been found to impact children’s ability to find symbols when navigating within the levels of an SGD: sustained attention, categorization, cognitive flexibility, and fluid reasoning1,2. According to past studies, working memory was not correlated with navigation1,2. The materials needed for this method include a computerized tablet, an augmentative and alternative communication application, a booklet of symbols, and the Leiter International Performance Scale-Revised (Leiter-R)3. This method has been used in two previous studies. Robillard, Mayer-Crittenden, Roy-Charland, Minor-Corriveau and Bélanger1 assessed typically developing children, while Rondeau, Robillard and Roy-Charland2 assessed children and adolescents with a diagnosis of Autism Spectrum Disorder. The direct observation of this method will facilitate the replication of this study for researchers. It will also help clinicians that work with children who have complex communication needs to determine the children’s ability to navigate an SGD with taxonomical categorization.
Behavior, Issue 100, Augmentative and alternative communication, navigation, cognition, assessment, speech-language pathology, children
Play Button
Modulating Cognition Using Transcranial Direct Current Stimulation of the Cerebellum
Authors: Paul A. Pope.
Institutions: University of Birmingham.
Numerous studies have emerged recently that demonstrate the possibility of modulating, and in some cases enhancing, cognitive processes by exciting brain regions involved in working memory and attention using transcranial electrical brain stimulation. Some researchers now believe the cerebellum supports cognition, possibly via a remote neuromodulatory effect on the prefrontal cortex. This paper describes a procedure for investigating a role for the cerebellum in cognition using transcranial direct current stimulation (tDCS), and a selection of information-processing tasks of varying task difficulty, which have previously been shown to involve working memory, attention and cerebellar functioning. One task is called the Paced Auditory Serial Addition Task (PASAT) and the other a novel variant of this task called the Paced Auditory Serial Subtraction Task (PASST). A verb generation task and its two controls (noun and verb reading) were also investigated. All five tasks were performed by three separate groups of participants, before and after the modulation of cortico-cerebellar connectivity using anodal, cathodal or sham tDCS over the right cerebellar cortex. The procedure demonstrates how performance (accuracy, verbal response latency and variability) could be selectively improved after cathodal stimulation, but only during tasks that the participants rated as difficult, and not easy. Performance was unchanged by anodal or sham stimulation. These findings demonstrate a role for the cerebellum in cognition, whereby activity in the left prefrontal cortex is likely dis-inhibited by cathodal tDCS over the right cerebellar cortex. Transcranial brain stimulation is growing in popularity in various labs and clinics. However, the after-effects of tDCS are inconsistent between individuals and not always polarity-specific, and may even be task- or load-specific, all of which requires further study. Future efforts might also be guided towards neuro-enhancement in cerebellar patients presenting with cognitive impairment once a better understanding of brain stimulation mechanisms has emerged.
Behavior, Issue 96, Cognition, working memory, tDCS, cerebellum, brain stimulation, neuro-modulation, neuro-enhancement
Play Button
Infant Auditory Processing and Event-related Brain Oscillations
Authors: Gabriella Musacchia, Silvia Ortiz-Mantilla, Teresa Realpe-Bonilla, Cynthia P. Roesler, April A. Benasich.
Institutions: Rutgers University, State University of New Jersey, Newark, University of the Pacific, Stanford University.
Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net application, recording, dynamic brain response analysis, and representative results.
Behavior, Issue 101, Infant, Infant Brain, Human Development, Auditory Development, Oscillations, Brain Oscillations, Theta, Electroencephalogram, Child Development, Event-related Potentials, Source Localization, Auditory Cortex
Play Button
Testing Sensory and Multisensory Function in Children with Autism Spectrum Disorder
Authors: Sarah H. Baum, Ryan A. Stevenson, Mark T. Wallace.
Institutions: Vanderbilt University Medical Center, University of Toronto, Vanderbilt University.
In addition to impairments in social communication and the presence of restricted interests and repetitive behaviors, deficits in sensory processing are now recognized as a core symptom in autism spectrum disorder (ASD). Our ability to perceive and interact with the external world is rooted in sensory processing. For example, listening to a conversation entails processing the auditory cues coming from the speaker (speech content, prosody, syntax) as well as the associated visual information (facial expressions, gestures). Collectively, the “integration” of these multisensory (i.e., combined audiovisual) pieces of information results in better comprehension. Such multisensory integration has been shown to be strongly dependent upon the temporal relationship of the paired stimuli. Thus, stimuli that occur in close temporal proximity are highly likely to result in behavioral and perceptual benefits – gains believed to be reflective of the perceptual system's judgment of the likelihood that these two stimuli came from the same source. Changes in this temporal integration are expected to strongly alter perceptual processes, and are likely to diminish the ability to accurately perceive and interact with our world. Here, a battery of tasks designed to characterize various aspects of sensory and multisensory temporal processing in children with ASD is described. In addition to its utility in autism, this battery has great potential for characterizing changes in sensory function in other clinical populations, as well as being used to examine changes in these processes across the lifespan.
Behavior, Issue 98, Temporal processing, multisensory integration, psychophysics, computer based assessments, sensory deficits, autism spectrum disorder
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
Play Button
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Authors: Benjamin N. Doblack, Tim Allis, Lilian P. Dávila.
Institutions: University of California Merced.
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Physics, Issue 94, Computational systems, visualization and immersive environments, interactive learning, graphical processing unit accelerated simulations, molecular dynamics simulations, nanostructures.
Play Button
Utilizing Repetitive Transcranial Magnetic Stimulation to Improve Language Function in Stroke Patients with Chronic Non-fluent Aphasia
Authors: Gabriella Garcia, Catherine Norise, Olufunsho Faseyitan, Margaret A. Naeser, Roy H. Hamilton.
Institutions: University of Pennsylvania , University of Pennsylvania , Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston University School of Medicine.
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing.
Medicine, Issue 77, Neurobiology, Neuroscience, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Neurology, Stroke, Aphasia, Transcranial Magnetic Stimulation, TMS, language, neurorehabilitation, optimal site-finding, functional magnetic resonance imaging, fMRI, brain, stimulation, imaging, clinical techniques, clinical applications
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
Play Button
A Novel Rescue Technique for Difficult Intubation and Difficult Ventilation
Authors: Maria M. Zestos, Dima Daaboul, Zulfiqar Ahmed, Nasser Durgham, Roland Kaddoum.
Institutions: Children’s Hospital of Michigan, St. Jude Children’s Research Hospital.
We describe a novel non surgical technique to maintain oxygenation and ventilation in a case of difficult intubation and difficult ventilation, which works especially well with poor mask fit. Can not intubate, can not ventilate" (CICV) is a potentially life threatening situation. In this video we present a simulation of the technique we used in a case of CICV where oxygenation and ventilation were maintained by inserting an endotracheal tube (ETT) nasally down to the level of the naso-pharynx while sealing the mouth and nares for successful positive pressure ventilation. A 13 year old patient was taken to the operating room for incision and drainage of a neck abcess and direct laryngobronchoscopy. After preoxygenation, anesthesia was induced intravenously. Mask ventilation was found to be extremely difficult because of the swelling of the soft tissue. The face mask could not fit properly on the face due to significant facial swelling as well. A direct laryngoscopy was attempted with no visualization of the larynx. Oxygen saturation was difficult to maintain, with saturations falling to 80%. In order to oxygenate and ventilate the patient, an endotracheal tube was then inserted nasally after nasal spray with nasal decongestant and lubricant. The tube was pushed gently and blindly into the hypopharynx. The mouth and nose of the patient were sealed by hand and positive pressure ventilation was possible with 100% O2 with good oxygen saturation during that period of time. Once the patient was stable and well sedated, a rigid bronchoscope was introduced by the otolaryngologist showing extensive subglottic and epiglottic edema, and a mass effect from the abscess, contributing to the airway compromise. The airway was secured with an ETT tube by the otolaryngologist.This video will show a simulation of the technique on a patient undergoing general anesthesia for dental restorations.
Medicine, Issue 47, difficult ventilation, difficult intubation, nasal, saturation
Play Button
Measurement Of Neuromagnetic Brain Function In Pre-school Children With Custom Sized MEG
Authors: Graciela Tesan, Blake W. Johnson, Melanie Reid, Rosalind Thornton, Stephen Crain.
Institutions: Macquarie University.
Magnetoencephalography is a technique that detects magnetic fields associated with cortical activity [1]. The electrophysiological activity of the brain generates electric fields - that can be recorded using electroencephalography (EEG)- and their concomitant magnetic fields - detected by MEG. MEG signals are detected by specialized sensors known as superconducting quantum interference devices (SQUIDs). Superconducting sensors require cooling with liquid helium at -270 °C. They are contained inside a vacumm-insulated helmet called a dewar, which is filled with liquid. SQUIDS are placed in fixed positions inside the helmet dewar in the helium coolant, and a subject's head is placed inside the helmet dewar for MEG measurements. The helmet dewar must be sized to satisfy opposing constraints. Clearly, it must be large enough to fit most or all of the heads in the population that will be studied. However, the helmet must also be small enough to keep most of the SQUID sensors within range of the tiny cerebral fields that they are to measure. Conventional whole-head MEG systems are designed to accommodate more than 90% of adult heads. However adult systems are not well suited for measuring brain function in pre-school chidren whose heads have a radius several cm smaller than adults. The KIT-Macquarie Brain Research Laboratory at Macquarie University uses a MEG system custom sized to fit the heads of pre-school children. This child system has 64 first-order axial gradiometers with a 50 mm baseline[2] and is contained inside a magnetically-shielded room (MSR) together with a conventional adult-sized MEG system [3,4]. There are three main advantages of the customized helmet dewar for studying children. First, the smaller radius of the sensor configuration brings the SQUID sensors into range of the neuromagnetic signals of children's heads. Second, the smaller helmet allows full insertion of a child's head into the dewar. Full insertion is prevented in adult dewar helmets because of the smaller crown to shoulder distance in children. These two factors are fundamental in recording brain activity using MEG because neuromagnetic signals attenuate rapidly with distance. Third, the customized child helmet aids in the symmetric positioning of the head and limits the freedom of movement of the child's head within the dewar. When used with a protocol that aligns the requirements of data collection with the motivational and behavioral capacities of children, these features significantly facilitate setup, positioning, and measurement of MEG signals.
Neuroscience, Issue 36, Magnetoencephalography, Pediatrics, Brain Mapping, Language, Brain Development, Cognitive Neuroscience, Language Acquisition, Linguistics
Play Button
Making Sense of Listening: The IMAP Test Battery
Authors: Johanna G. Barry, Melanie A. Ferguson, David R. Moore.
Institutions: MRC Institute of Hearing Research, National Biomedical Research Unit in Hearing.
The ability to hear is only the first step towards making sense of the range of information contained in an auditory signal. Of equal importance are the abilities to extract and use the information encoded in the auditory signal. We refer to these as listening skills (or auditory processing AP). Deficits in these skills are associated with delayed language and literacy development, though the nature of the relevant deficits and their causal connection with these delays is hotly debated. When a child is referred to a health professional with normal hearing and unexplained difficulties in listening, or associated delays in language or literacy development, they should ideally be assessed with a combination of psychoacoustic (AP) tests, suitable for children and for use in a clinic, together with cognitive tests to measure attention, working memory, IQ, and language skills. Such a detailed examination needs to be relatively short and within the technical capability of any suitably qualified professional. Current tests for the presence of AP deficits tend to be poorly constructed and inadequately validated within the normal population. They have little or no reference to the presenting symptoms of the child, and typically include a linguistic component. Poor performance may thus reflect problems with language rather than with AP. To assist in the assessment of children with listening difficulties, pediatric audiologists need a single, standardized child-appropriate test battery based on the use of language-free stimuli. We present the IMAP test battery which was developed at the MRC Institute of Hearing Research to supplement tests currently used to investigate cases of suspected AP deficits. IMAP assesses a range of relevant auditory and cognitive skills and takes about one hour to complete. It has been standardized in 1500 normally-hearing children from across the UK, aged 6-11 years. Since its development, it has been successfully used in a number of large scale studies both in the UK and the USA. IMAP provides measures for separating out sensory from cognitive contributions to hearing. It further limits confounds due to procedural effects by presenting tests in a child-friendly game-format. Stimulus-generation, management of test protocols and control of test presentation is mediated by the IHR-STAR software platform. This provides a standardized methodology for a range of applications and ensures replicable procedures across testers. IHR-STAR provides a flexible, user-programmable environment that currently has additional applications for hearing screening, mapping cochlear implant electrodes, and academic research or teaching.
Neuroscience, Issue 44, Listening skills, auditory processing, auditory psychophysics, clinical assessment, child-friendly testing
Play Button
Assessment of Cerebral Lateralization in Children using Functional Transcranial Doppler Ultrasound (fTCD)
Authors: Dorothy V. M. Bishop, Nicholas A. Badcock, Georgina Holt.
Institutions: University of Oxford.
There are many unanswered questions about cerebral lateralization. In particular, it remains unclear which aspects of language and nonverbal ability are lateralized, whether there are any disadvantages associated with atypical patterns of cerebral lateralization, and whether cerebral lateralization develops with age. In the past, researchers interested in these questions tended to use handedness as a proxy measure for cerebral lateralization, but this is unsatisfactory because handedness is only a weak and indirect indicator of laterality of cognitive functions1. Other methods, such as fMRI, are expensive for large-scale studies, and not always feasible with children2. Here we will describe the use of functional transcranial Doppler ultrasound (fTCD) as a cost-effective, non-invasive and reliable method for assessing cerebral lateralization. The procedure involves measuring blood flow in the middle cerebral artery via an ultrasound probe placed just in front of the ear. Our work builds on work by Rune Aaslid, who co-introduced TCD in 1982, and Stefan Knecht, Michael Deppe and their colleagues at the University of Münster, who pioneered the use of simultaneous measurements of left- and right middle cerebral artery blood flow, and devised a method of correcting for heart beat activity. This made it possible to see a clear increase in left-sided blood flow during language generation, with lateralization agreeing well with that obtained using other methods3. The middle cerebral artery has a very wide vascular territory (see Figure 1) and the method does not provide useful information about localization within a hemisphere. Our experience suggests it is particularly sensitive to tasks that involve explicit or implicit speech production. The 'gold standard' task is a word generation task (e.g. think of as many words as you can that begin with the letter 'B') 4, but this is not suitable for young children and others with limited literacy skills. Compared with other brain imaging methods, fTCD is relatively unaffected by movement artefacts from speaking, and so we are able to get a reliable result from tasks that involve describing pictures aloud5,6. Accordingly, we have developed a child-friendly task that involves looking at video-clips that tell a story, and then describing what was seen.
Neuroscience, Issue 43, functional transcranial Doppler ultrasound, cerebral lateralization, language, child
Play Button
Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals in Axons: Student Laboratory Exercises
Authors: Martha M. Robinson, Jonathan M. Martin, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
This is a demonstration of how electrical models can be used to characterize biological membranes. This exercise also introduces biophysical terminology used in electrophysiology. The same equipment is used in the membrane model as on live preparations. Some properties of an isolated nerve cord are investigated: nerve action potentials, recruitment of neurons, and responsiveness of the nerve cord to environmental factors.
Basic Protocols, Issue 47, Invertebrate, Crayfish, Modeling, Student laboratory, Nerve cord
Play Button
Guidelines for Elective Pediatric Fiberoptic Intubation
Authors: Roland N. Kaddoum, Zulfiqar Ahmed, Alan A. D'Augsutine, Maria M. Zestos.
Institutions: St. Jude Children's Research Hospital, Children's Hospital of Michigan, Children's Hospital of Michigan.
Fiberoptic intubation in pediatric patients is often required especially in difficult airways of syndromic patients i.e. Pierre Robin Syndrome. Small babies will desaturate very quickly if ventilation is interrupted mainly to high metabolic rate. We describe guidelines to perform a safe fiberoptic intubation while maintaining spontaneous breathing throughout the procedure. Steps requiring the use of propofol pump, fentanyl, glycopyrrolate, red rubber catheter, metal insuflation hook, afrin, lubricant and lidocaine spray are shown.
Medicine, Issue 47, Fiberoptic, Intubation, Pediatric, elective
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Trans-vivo Delayed Type Hypersensitivity Assay for Antigen Specific Regulation
Authors: Ewa Jankowska-Gan, Subramanya Hegde, William J. Burlingham.
Institutions: University of Wisconsin-Madison, School of Medicine and Public Health.
Delayed-type hypersensitivity response (DTH) is a rapid in vivo manifestation of T cell-dependent immune response to a foreign antigen (Ag) that the host immune system has experienced in the recent past. DTH reactions are often divided into a sensitization phase, referring to the initial antigen experience, and a challenge phase, which usually follows several days after sensitization. The lack of a delayed-type hypersensitivity response to a recall Ag demonstrated by skin testing is often regarded as an evidence of anergy. The traditional DTH assay has been effectively used in diagnosing many microbial infections. Despite sharing similar immune features such as lymphocyte infiltration, edema, and tissue necrosis, the direct DTH is not a feasible diagnostic technique in transplant patients because of the possibility of direct injection resulting in sensitization to donor antigens and graft loss. To avoid this problem, the human-to-mouse "trans-vivo" DTH assay was developed 1,2. This test is essentially a transfer DTH assay, in which human peripheral blood mononuclear cells (PBMCs) and specific antigens were injected subcutaneously into the pinnae or footpad of a naïve mouse and DTH-like swelling is measured after 18-24 hr 3. The antigen presentation by human antigen presenting cells such as macrophages or DCs to T cells in highly vascular mouse tissue triggers the inflammatory cascade and attracts mouse immune cells resulting in swelling responses. The response is antigen-specific and requires prior antigen sensitization. A positive donor-reactive DTH response in the Tv-DTH assay reflects that the transplant patient has developed a pro-inflammatory immune disposition toward graft alloantigens. The most important feature of this assay is that it can also be used to detect regulatory T cells, which cause bystander suppression. Bystander suppression of a DTH recall response in the presence of donor antigen is characteristic of transplant recipients with accepted allografts 2,4-14. The monitoring of transplant recipients for alloreactivity and regulation by Tv-DTH may identify a subset of patients who could benefit from reduction of immunosuppression without elevated risk of rejection or deteriorating renal function. A promising area is the application of the Tv-DTH assay in monitoring of autoimmunity15,16 and also in tumor immunology 17.
Immunology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Surgery, Trans-vivo delayed type hypersensitivity, Tv-DTH, Donor antigen, Antigen-specific regulation, peripheral blood mononuclear cells, PBMC, T regulatory cells, severe combined immunodeficient mice, SCID, T cells, lymphocytes, inflammation, injection, mouse, animal model
Play Button
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers
Authors: Stuart M. Roche, Jonathan P. Gumucio, Susan V. Brooks, Christopher L. Mendias, Dennis R. Claflin.
Institutions: University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School.
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
Bioengineering, Issue 100, Muscle physiology, skeletal muscle, single muscle fiber, permeabilized, cross-sectional area, isometric force, specific force
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.