JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Regulatory T cells in early life: comparative study of CD4+CD25high T cells from foals and adult horses.
.
PLoS ONE
PUBLISHED: 03-20-2015
The immune system of mammals is subject to continuous development during the postnatal phase of life. Studies following the longitudinal development of the immune system in healthy children are limited both by ethical considerations and sample volumes. Horses represent a particular valuable large animal model for T regulatory (Treg) cells and allergy research. We have recently characterised Treg cells from horses, demonstrated their regulatory capability and showed both their expansion and induction in vitro. Insect bite hypersensitivity (IBH) is a common allergy in horses resembling atopic dermatitis and studies have shown that first exposure to allergens in adult life results in an increased incidence of IBH. The aim of the present study was to characterize circulating CD4+CD25highFoxP3+cells in foals, evaluate their suppressive capability and their in vitro induction compared to adult horses. 19 foals (age range, 1-5 months), their adult mothers and six one-year-old horses (yearlings) were included in the study. The proportion of FoxP3+ cells within the circulating CD4+CD25high population was significantly higher in foals (47%) compared to their mothers (18%) and to yearlings (26%). Treg cells from foals also displayed a higher suppressive capability. Furthermore, CD4+CD25high cells in foals could be induced in vitro from CD4+CD25- cells in a significantly higher proportion compared to mares. These cells also displayed a significantly enhanced suppressive capability. In summary these findings support the notion that exposure of horses to allergens during maturation of the immune system assists the establishment of induced (i)Treg driven tolerance.
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Published: 09-26-2013
ABSTRACT
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
16 Related JoVE Articles!
Play Button
Human In Vitro Suppression as Screening Tool for the Recognition of an Early State of Immune Imbalance
Authors: Jill Waukau, Jeffrey Woodliff, Sanja Glisic.
Institutions: Medical College of Wisconsin , Medical College of Wisconsin , Medical College of Wisconsin .
Regulatory T cells (Tregs) are critical mediators of immune tolerance to self-antigens. In addition, they are crucial regulators of the immune response following an infection. Despite efforts to identify unique surface marker on Tregs, the only unique feature is their ability to suppress the proliferation and function of effector T cells. While it is clear that only in vitro assays can be used in assessing human Treg function, this becomes problematic when assessing the results from cross-sectional studies where healthy cells and cells isolated from subjects with autoimmune diseases (like Type 1 Diabetes-T1D) need to be compared. There is a great variability among laboratories in the number and type of responder T cells, nature and strength of stimulation, Treg:responder ratios and the number and type of antigen-presenting cells (APC) used in human in vitro suppression assays. This variability makes comparison between studies measuring Treg function difficult. The Treg field needs a standardized suppression assay that will work well with both healthy subjects and those with autoimmune diseases. We have developed an in vitro suppression assay that shows very little intra-assay variability in the stimulation of T cells isolated from healthy volunteers compared to subjects with underlying autoimmune destruction of pancreatic β-cells. The main goal of this piece is to describe an in vitro human suppression assay that allows comparison between different subject groups. Additionally, this assay has the potential to delineate a small loss in nTreg function and anticipate further loss in the future, thus identifying subjects who could benefit from preventive immunomodulatory therapy1. Below, we provide thorough description of the steps involved in this procedure. We hope to contribute to the standardization of the in vitro suppression assay used to measure Treg function. In addition, we offer this assay as a tool to recognize an early state of immune imbalance and a potential functional biomarker for T1D.
Immunology, Issue 53, suppression, regulatory T cells, Tregs, activated T cells, autoimmune disease, Type 1 Diabetes (T1D)
3071
Play Button
Mouse Naïve CD4+ T Cell Isolation and In vitro Differentiation into T Cell Subsets
Authors: Stephanie Flaherty, Joseph M. Reynolds.
Institutions: Rosalind Franklin University of Medicine and Science.
Antigen inexperienced (naïve) CD4+ T cells undergo expansion and differentiation to effector subsets at the time of T cell receptor (TCR) recognition of cognate antigen presented on MHC class II. The cytokine signals present in the environment at the time of TCR activation are a major factor in determining the effector fate of a naïve CD4+ T cell. Although the cytokine environment during naïve T cell activation may be complex and involve both redundant and opposing signals in vivo, the addition of various cytokine combinations during naive CD4+ T cell activation in vitro can readily promote the establishment of effector T helper lineages with hallmark cytokine and transcription factor expression. Such differentiation experiments are commonly used as a first step for the evaluation of targets believed to promote or inhibit the development of certain CD4+ T helper subsets. The addition of mediators, such as signaling agonists, antagonists, or other cytokines, during the differentiation process can also be used to study the influence of a particular target on T cell differentiation. Here, we describe a basic protocol for the isolation of naïve T cells from mouse and the subsequent steps necessary for polarizing naïve cells to various T helper effector lineages in vitro.
Immunology, Issue 98, Naïve CD4+ T cell, T helper cell, Th1, Th2, Th17, Treg
52739
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
50244
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
50455
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI
Authors: Sari Sabban, Hongtu Ye, Birgit Helm.
Institutions: King Abdulaziz University, The University of Sheffield.
The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains 1. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout 2, 3. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml-1 of antigen. This assay was modified from previous assays used to study human and canine allergic responses 4, 5. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease 6, 2, 3.
Immunology, Issue 93, Allergy, Immunology, IgE, Fcε, RI, horse (Equus caballus), Immunoassay
52222
Play Button
Induction of Murine Intestinal Inflammation by Adoptive Transfer of Effector CD4+CD45RBhigh T Cells into Immunodeficient Mice
Authors: Erin C. Steinbach, Gregory R. Gipson, Shehzad Z. Sheikh.
Institutions: University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill.
There are many different animal models available for studying the pathogenesis of human inflammatory bowel diseases (IBD), each with its own advantages and disadvantages. We describe here an experimental colitis model that is initiated by adoptive transfer of syngeneic splenic CD4+CD45RBhigh T cells into T and B cell deficient recipient mice. The CD4+CD45RBhigh T cell population that largely consists of naïve effector cells is capable of inducing chronic intestinal inflammation, closely resembling key aspects of human IBD. This method can be manipulated to study aspects of disease onset and progression. Additionally it can be used to study the function of innate, adaptive, and regulatory immune cell populations, and the role of environmental exposures, i.e., the microbiota, in intestinal inflammation. In this article we illustrate the methodology for inducing colitis with a step-by-step protocol. This includes a video demonstration of key technical aspects required to successfully develop this murine model of experimental colitis for research purposes.
Immunology, Issue 98, IBD, Colitis, Experimental Models, Adaptive Immunity, T cells, Mucosal Immunity, Inflammation
52533
Play Button
Th17 Inflammation Model of Oropharyngeal Candidiasis in Immunodeficient Mice
Authors: Natarajan Bhaskaran, Aaron Weinberg, Pushpa Pandiyan.
Institutions: Case Western Reserve University.
Oropharyngeal Candidiasis (OPC) disease is caused not only due to the lack of host immune resistance, but also the absence of appropriate regulation of infection-induced immunopathology. Although Th17 cells are implicated in antifungal defense, their role in immunopathology is unclear. This study presents a method for establishing oral Th17 immunopathology associated with oral candidal infection in immunodeficient mice. The method is based on reconstituting lymphopenic mice with in vitro cultured Th17 cells, followed by oral infection with Candida albicans (C. albicans). Results show that unrestrained Th17 cells result in inflammation and pathology, and is associated with several measurable read-outs including weight loss, pro-inflammatory cytokine production, tongue histopathology and mortality, showing that this model may be valuable in studying OPC immunopathology. Adoptive transfer of regulatory cells (Tregs) controls and reduces the inflammatory response, showing that this model can be used to test new strategies to counteract oral inflammation. This model may also be applicable in studying oral Th17 immunopathology in general in the context of other oral diseases.
Medicine, Issue 96, Th17, Treg, mouse model, oral inflammation, Candida, oral infection and immunopathology
52538
Play Button
Interview: Glycolipid Antigen Presentation by CD1d and the Therapeutic Potential of NKT cell Activation
Authors: Mitchell Kronenberg.
Institutions: La Jolla Institute for Allergy and Immunology.
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d - the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.
Immunology, Issue 10, Natural Killer T cells, NKT cells, CD1 Tetramers, antigen presentation, glycolipid antigens, CD1d, Mucosal Immunity, Translational Research
635
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
51354
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
50537
Play Button
Accelerated Type 1 Diabetes Induction in Mice by Adoptive Transfer of Diabetogenic CD4+ T Cells
Authors: Gregory Berry, Hanspeter Waldner.
Institutions: Pennsylvania State University College of Medicine.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.
Immunology, Issue 75, Medicine, Cellular Biology, Molecular Biology, Microbiology, Anatomy, Physiology, Biomedical Engineering, Genetics, Surgery, Type 1 diabetes, CD4+ T cells, diabetogenic T cells, T cell transfer, diabetes induction method, diabetes, T cells, isolation, cell sorting, FACS, transgenic mice, animal model
50389
Play Button
Optimized Staining and Proliferation Modeling Methods for Cell Division Monitoring using Cell Tracking Dyes
Authors: Joseph D. Tario Jr., Kristen Humphrey, Andrew D. Bantly, Katharine A. Muirhead, Jonni S. Moore, Paul K. Wallace.
Institutions: Roswell Park Cancer Institute, University of Pennsylvania , SciGro, Inc., University of Pennsylvania .
Fluorescent cell tracking dyes, in combination with flow and image cytometry, are powerful tools with which to study the interactions and fates of different cell types in vitro and in vivo.1-5 Although there are literally thousands of publications using such dyes, some of the most commonly encountered cell tracking applications include monitoring of: stem and progenitor cell quiescence, proliferation and/or differentiation6-8 antigen-driven membrane transfer9 and/or precursor cell proliferation3,4,10-18 and immune regulatory and effector cell function1,18-21. Commercially available cell tracking dyes vary widely in their chemistries and fluorescence properties but the great majority fall into one of two classes based on their mechanism of cell labeling. "Membrane dyes", typified by PKH26, are highly lipophilic dyes that partition stably but non-covalently into cell membranes1,2,11. "Protein dyes", typified by CFSE, are amino-reactive dyes that form stable covalent bonds with cell proteins4,16,18. Each class has its own advantages and limitations. The key to their successful use, particularly in multicolor studies where multiple dyes are used to track different cell types, is therefore to understand the critical issues enabling optimal use of each class2-4,16,18,24. The protocols included here highlight three common causes of poor or variable results when using cell-tracking dyes. These are: Failure to achieve bright, uniform, reproducible labeling. This is a necessary starting point for any cell tracking study but requires attention to different variables when using membrane dyes than when using protein dyes or equilibrium binding reagents such as antibodies. Suboptimal fluorochrome combinations and/or failure to include critical compensation controls. Tracking dye fluorescence is typically 102 - 103 times brighter than antibody fluorescence. It is therefore essential to verify that the presence of tracking dye does not compromise the ability to detect other probes being used. Failure to obtain a good fit with peak modeling software. Such software allows quantitative comparison of proliferative responses across different populations or stimuli based on precursor frequency or other metrics. Obtaining a good fit, however, requires exclusion of dead/dying cells that can distort dye dilution profiles and matching of the assumptions underlying the model with characteristics of the observed dye dilution profile. Examples given here illustrate how these variables can affect results when using membrane and/or protein dyes to monitor cell proliferation.
Cellular Biology, Issue 70, Molecular Biology, Cell tracking, PKH26, CFSE, membrane dyes, dye dilution, proliferation modeling, lymphocytes
4287
Play Button
Generation of Induced Regulatory T Cells from Primary Human Naïve and Memory T Cells
Authors: Gavin I. Ellis, Mary Catherine Reneer, Alejandra Catalina Vélez-Ortega, Andrea McCool, Francesc Martí.
Institutions: University of Kentucky .
The development and maintenance of immunosuppressive CD4+ regulatory T cells (Tregs) contribute to the peripheral tolerance needed to remain in immunologic homeostasis with the vast amount of self and commensal antigens in and on the human body. Perturbations in the balance between Tregs and inflammatory conventional T cells can result in immunopathology or cancer. Although therapeutic injection of Tregs has been shown to be efficacious in murine models of colitis1 , type I diabetes2 , rheumatoid arthritis and graft versus host disease,4 several fundamental differences in human versus mouse Treg biology5 has thus far precluded clinical use. The lack of sufficient number, purity, stability and homing specificity of therapeutic Tregs necessitated a dynamic platform of human Treg development on which to optimize conditions for their ex vivo expansion6. Here we describe a method for the differentiation of induced Tregs (iTregs) from a single human peripheral blood donor which can be broken down into four stages: isolation of peripheral blood mononuclear cells, magnetic selection of CD4+ T cells, in vitro cell culture and fluorescence activated cell sorting (FACS) of T cell subsets. Since the Treg signature transcription factor forkhead box P3 (FoxP3) is an activation-induced transcription factor in humans7 and no other unique marker exists, a combinatorial panel of markers must be used to identify T cells with suppressor activity. After six days in culture, cells in our system can be demarcated into naïve T cells, memory T cells or iTregs based on their relative expression of CD25 and CD45RA. As memory and naïve T cells have different reported polarization requirements and plasticities8 , pre-sorting of the initial T cell population into CD45RA+ and CD45RO+ subsets can be used to examine these discrepancies. Consistent with others, our CD25HiCD45RA- iTregs express high levels of FoxP39 , GITR and CTLA-411 and low levels of CD12712 . Following FACS of each population, resultant cells can be used in a suppressor assay which evaluates the relative ability to retard the proliferation of carboxyfluorescein succinimidyl ester (CFSE)-labeled autologous T cells.
Immunology, Issue 62, regulatory T cell, iTreg, immunosuppression, human, suppressor activity
3738
Play Button
Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface
Authors: Marcia Arenas-Hernandez, Elly N. Sanchez-Rodriguez, Tara N. Mial, Sarah A. Robertson, Nardhy Gomez-Lopez.
Institutions: Wayne State University School of Medicine, The University of Adelaide, Wayne State University School of Medicine, NICHD/NIH/DHHS.
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Immunology, Issue 99, Decidua, Dissociation, Isolation, Leukocytes, Myometrium, Placenta, Pregnancy, Uterus
52866
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.