JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Green auctions and reduction of information rents in payments for environmental services: an experimental investigation in Sunan County, northwestern China.
.
PLoS ONE
PUBLISHED: 03-21-2015
Reducing information rents is an important task for government agencies wishing to purchase maximal environmental services with limited budgets. This paper reports on several green auction options for reducing information rents and improving the performance of the "Grain for Green" Payments for environmental services (PES) program implemented in northwestern China. In r experimental auctions and investigations, door-to-door interviews were conducted and bidding envelopes and survey questionnaires were used to determine the offers and the foregone profits of the participants. Three scenarios are analyzed in this paper: a uniform price auction, a discriminatory price auction, and an opportunity-cost system. The results show that compared to the uniform price auction system, the other auction systems can increase the cost-effectiveness of conservation contracting. Competitive bidding can reveal true opportunity costs and can reduce information rents extracted from the government by farmers using private information. The demographics and average bids of these auction types were also analyzed. "Perfect information" in the opportunity-cost offer system has the best performance but is very hard to implement in reality. The results of this research show that the auction is a valuable tool for purchasing conservation contracts in northwestern China, but that in the future, the performance of these auctions should be studied with relaxed model assumptions.
Authors: Kathleen Ongena, Chandreyee Das, Janet L. Smith, Sónia Gil, Grace Johnston.
Published: 11-26-2010
ABSTRACT
Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measurements of cellular responses. Despite this need for speed and accuracy in cell counting, 71% of 400 researchers surveyed1 who count cells using a hemocytometer. While hemocytometry is inexpensive, it is laborious and subject to user bias and misuse, which results in inaccurate counts. Hemocytometers are made of special optical glass on which cell suspensions are loaded in specified volumes and counted under a microscope. Sources of errors in hemocytometry include: uneven cell distribution in the sample, too many or too few cells in the sample, subjective decisions as to whether a given cell falls within the defined counting area, contamination of the hemocytometer, user-to-user variation, and variation of hemocytometer filling rate2. To alleviate the tedium associated with manual counting, 29% of researchers count cells using automated cell counting devices; these include vision-based counters, systems that detect cells using the Coulter principle, or flow cytometry1. For most researchers, the main barrier to using an automated system is the price associated with these large benchtop instruments1. The Scepter cell counter is an automated handheld device that offers the automation and accuracy of Coulter counting at a relatively low cost. The system employs the Coulter principle of impedance-based particle detection3 in a miniaturized format using a combination of analog and digital hardware for sensing, signal processing, data storage, and graphical display. The disposable tip is engineered with a microfabricated, cell- sensing zone that enables discrimination by cell size and cell volume at sub-micron and sub-picoliter resolution. Enhanced with precision liquid-handling channels and electronics, the Scepter cell counter reports cell population statistics graphically displayed as a histogram.
27 Related JoVE Articles!
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Multimodal Optical Microscopy Methods Reveal Polyp Tissue Morphology and Structure in Caribbean Reef Building Corals
Authors: Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.
Environmental Sciences, Issue 91, Serial block face imaging, two-photon fluorescence microscopy, Montastraea annularis, Montastraea faveolata, 3D coral tissue morphology and structure, zooxanthellae, chromatophore, autofluorescence, light harvesting optimization, environmental change
51824
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
52183
Play Button
Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans
Authors: Carmen I. Nussbaum-Krammer, Mário F. Neto, Renée M. Brielmann, Jesper S. Pedersen, Richard I. Morimoto.
Institutions: Northwestern University.
Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans.
Cellular Biology, Issue 95, Caenorhabditis elegans, neurodegenerative diseases, protein misfolding diseases, prion-like spreading, cell-to-cell transmission, protein aggregation, non-cell autonomous toxicity, proteostasis
52321
Play Button
Mindfulness in Motion (MIM): An Onsite Mindfulness Based Intervention (MBI) for Chronically High Stress Work Environments to Increase Resiliency and Work Engagement
Authors: Maryanna Klatt, Beth Steinberg, Anne-Marie Duchemin.
Institutions: The Ohio State University College of Medicine, Wexner Medical Center, The Ohio State University College of Medicine.
A pragmatic mindfulness intervention to benefit personnel working in chronically high-stress environments, delivered onsite during the workday, is timely and valuable to employee and employer alike. Mindfulness in Motion (MIM) is a Mindfulness Based Intervention (MBI) offered as a modified, less time intensive method (compared to Mindfulness-Based Stress Reduction), delivered onsite, during work, and intends to enable busy working adults to experience the benefits of mindfulness. It teaches mindful awareness principles, rehearses mindfulness as a group, emphasizes the use of gentle yoga stretches, and utilizes relaxing music in the background of both the group sessions and individual mindfulness practice. MIM is delivered in a group format, for 1 hr/week/8 weeks. CDs and a DVD are provided to facilitate individual practice. The yoga movement is emphasized in the protocol to facilitate a quieting of the mind. The music is included for participants to associate the relaxed state experienced in the group session with their individual practice. To determine the intervention feasibility/efficacy we conducted a randomized wait-list control group in Intensive Care Units (ICUs). ICUs represent a high-stress work environment where personnel experience chronic exposure to catastrophic situations as they care for seriously injured/ill patients. Despite high levels of work-related stress, few interventions have been developed and delivered onsite for such environments. The intervention is delivered on site in the ICU, during work hours, with participants receiving time release to attend sessions. The intervention is well received with 97% retention rate. Work engagement and resiliency increase significantly in the intervention group, compared to the wait-list control group, while participant respiration rates decrease significantly pre-post in 6/8 of the weekly sessions. Participants value institutional support, relaxing music, and the instructor as pivotal to program success. This provides evidence that MIM is feasible, well accepted, and can be effectively implemented in a chronically high-stress work environment.
Behavior, Issue 101, Mindfulness, resiliency, work-engagement, stress-reduction, workplace, non-reactivity, Intensive-care, chronic stress, work environment
52359
Play Button
Detection of Foodborne Bacterial Pathogens from Individual Filth Flies
Authors: Monica Pava-Ripoll, Rachel E.G. Pearson, Amy K. Miller, George C. Ziobro.
Institutions: U.S. Food and Drug Administration.
There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how the food was contaminated when performing foodborne outbreak investigations.
Environmental Sciences, Issue 96, Synanthropy, filth flies, Cronobacter, Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, shiga-toxigenic E. coli, STEC, PCR-based methods, foodborne illness, foodborne outbreak investigations.
52372
Play Button
Methods for Characterizing the Co-development of Biofilm and Habitat Heterogeneity
Authors: Xiaobao Li, Jisun L. Song, Alessandro Culotti, Wei Zhang, David L. Chopp, Nanxi Lu, Aaron I. Packman.
Institutions: Northwestern University, Northwestern University, Northwestern University.
Biofilms are surface-attached microbial communities that have complex structures and produce significant spatial heterogeneities. Biofilm development is strongly regulated by the surrounding flow and nutritional environment. Biofilm growth also increases the heterogeneity of the local microenvironment by generating complex flow fields and solute transport patterns. To investigate the development of heterogeneity in biofilms and interactions between biofilms and their local micro-habitat, we grew mono-species biofilms of Pseudomonas aeruginosa and dual-species biofilms of P. aeruginosa and Escherichia coli under nutritional gradients in a microfluidic flow cell. We provide detailed protocols for creating nutrient gradients within the flow cell and for growing and visualizing biofilm development under these conditions. We also present protocols for a series of optical methods to quantify spatial patterns in biofilm structure, flow distributions over biofilms, and mass transport around and within biofilm colonies. These methods support comprehensive investigations of the co-development of biofilm and habitat heterogeneity.
Bioengineering, Issue 97, microfluidic flow cell, chemical gradient, biofilm development, particle tracking, flow characterization, fluorescent tracer, solute transport
52602
Play Button
The Double-H Maze: A Robust Behavioral Test for Learning and Memory in Rodents
Authors: Robert D. Kirch, Richard C. Pinnell, Ulrich G. Hofmann, Jean-Christophe Cassel.
Institutions: University Hospital Freiburg, UMR 7364 Université de Strasbourg, CNRS, Neuropôle de Strasbourg.
Spatial cognition research in rodents typically employs the use of maze tasks, whose attributes vary from one maze to the next. These tasks vary by their behavioral flexibility and required memory duration, the number of goals and pathways, and also the overall task complexity. A confounding feature in many of these tasks is the lack of control over the strategy employed by the rodents to reach the goal, e.g., allocentric (declarative-like) or egocentric (procedural) based strategies. The double-H maze is a novel water-escape memory task that addresses this issue, by allowing the experimenter to direct the type of strategy learned during the training period. The double-H maze is a transparent device, which consists of a central alleyway with three arms protruding on both sides, along with an escape platform submerged at the extremity of one of these arms. Rats can be trained using an allocentric strategy by alternating the start position in the maze in an unpredictable manner (see protocol 1; §4.7), thus requiring them to learn the location of the platform based on the available allothetic cues. Alternatively, an egocentric learning strategy (protocol 2; §4.8) can be employed by releasing the rats from the same position during each trial, until they learn the procedural pattern required to reach the goal. This task has been proven to allow for the formation of stable memory traces. Memory can be probed following the training period in a misleading probe trial, in which the starting position for the rats alternates. Following an egocentric learning paradigm, rats typically resort to an allocentric-based strategy, but only when their initial view on the extra-maze cues differs markedly from their original position. This task is ideally suited to explore the effects of drugs/perturbations on allocentric/egocentric memory performance, as well as the interactions between these two memory systems.
Behavior, Issue 101, Double-H maze, spatial memory, procedural memory, consolidation, allocentric, egocentric, habits, rodents, video tracking system
52667
Play Button
Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition
Authors: Rafael Jaramillo, Vera Steinmann, Chuanxi Yang, Katy Hartman, Rupak Chakraborty, Jeremy R. Poindexter, Mariela Lizet Castillo, Roy Gordon, Tonio Buonassisi.
Institutions: Massachusetts Institute of Technology, Massachusetts Institute of Technology, Harvard University, Massachusetts Institute of Technology, Harvard University.
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.
Engineering, Issue 99, Solar cells, thin films, thermal evaporation, atomic layer deposition, annealing, tin sulfide
52705
Play Button
Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability
Authors: Jodi R. Schilz, K. J. Reddy, Sreejayan Nair, Thomas E. Johnson, Ronald B. Tjalkens, Kem P. Krueger, Suzanne Clark.
Institutions: University of New Mexico, University of Wyoming, University of Wyoming, Colorado State University, Colorado State University, California Northstate University.
In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters.
Environmental Sciences, Issue 100, Energy production, uranium in situ recovery, water decontamination, nanoparticles, toxicity, cytotoxicity, in vitro cell culture
52715
Play Button
Assessment of Social Cognition in Non-human Primates Using a Network of Computerized Automated Learning Device (ALDM) Test Systems
Authors: Joël Fagot, Yousri Marzouki, Pascal Huguet, Julie Gullstrand, Nicolas Claidière.
Institutions: Aix-Marseille University.
Fagot & Paleressompoulle1 and Fagot & Bonte2 have published an automated learning device (ALDM) for the study of cognitive abilities of monkeys maintained in semi-free ranging conditions. Data accumulated during the last five years have consistently demonstrated the efficiency of this protocol to investigate individual/physical cognition in monkeys, and have further shown that this procedure reduces stress level during animal testing3. This paper demonstrates that networks of ALDM can also be used to investigate different facets of social cognition and in-group expressed behaviors in monkeys, and describes three illustrative protocols developed for that purpose. The first study demonstrates how ethological assessments of social behavior and computerized assessments of cognitive performance could be integrated to investigate the effects of socially exhibited moods on the cognitive performance of individuals. The second study shows that batteries of ALDM running in parallel can provide unique information on the influence of the presence of others on task performance. Finally, the last study shows that networks of ALDM test units can also be used to study issues related to social transmission and cultural evolution. Combined together, these three studies demonstrate clearly that ALDM testing is a highly promising experimental tool for bridging the gap in the animal literature between research on individual cognition and research on social cognition.
Behavior, Issue 99, Baboon, automated learning device, cultural transmission, emotion, social facilitation, cognition, operant conditioning.
52798
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
51405
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
51281
Play Button
Using Visual and Narrative Methods to Achieve Fair Process in Clinical Care
Authors: Laura S. Lorenz, Jon A. Chilingerian.
Institutions: Brandeis University, Brandeis University.
The Institute of Medicine has targeted patient-centeredness as an important area of quality improvement. A major dimension of patient-centeredness is respect for patient's values, preferences, and expressed needs. Yet specific approaches to gaining this understanding and translating it to quality care in the clinical setting are lacking. From a patient perspective quality is not a simple concept but is best understood in terms of five dimensions: technical outcomes; decision-making efficiency; amenities and convenience; information and emotional support; and overall patient satisfaction. Failure to consider quality from this five-pronged perspective results in a focus on medical outcomes, without considering the processes central to quality from the patient's perspective and vital to achieving good outcomes. In this paper, we argue for applying the concept of fair process in clinical settings. Fair process involves using a collaborative approach to exploring diagnostic issues and treatments with patients, explaining the rationale for decisions, setting expectations about roles and responsibilities, and implementing a core plan and ongoing evaluation. Fair process opens the door to bringing patient expertise into the clinical setting and the work of developing health care goals and strategies. This paper provides a step by step illustration of an innovative visual approach, called photovoice or photo-elicitation, to achieve fair process in clinical work with acquired brain injury survivors and others living with chronic health conditions. Applying this visual tool and methodology in the clinical setting will enhance patient-provider communication; engage patients as partners in identifying challenges, strengths, goals, and strategies; and support evaluation of progress over time. Asking patients to bring visuals of their lives into the clinical interaction can help to illuminate gaps in clinical knowledge, forge better therapeutic relationships with patients living with chronic conditions such as brain injury, and identify patient-centered goals and possibilities for healing. The process illustrated here can be used by clinicians, (primary care physicians, rehabilitation therapists, neurologists, neuropsychologists, psychologists, and others) working with people living with chronic conditions such as acquired brain injury, mental illness, physical disabilities, HIV/AIDS, substance abuse, or post-traumatic stress, and by leaders of support groups for the types of patients described above and their family members or caregivers.
Medicine, Issue 48, person-centered care, participatory visual methods, photovoice, photo-elicitation, narrative medicine, acquired brain injury, disability, rehabilitation, palliative care
2342
Play Button
Investigating Social Cognition in Infants and Adults Using Dense Array Electroencephalography (dEEG)
Authors: Adekemi J. Akano, David W. Haley, Joanna Dudek.
Institutions: University Toronto Scarborough.
Dense array electroencephalography (dEEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology1,2, is being used increasingly in the study of social cognitive functioning in infants and adults. While dEEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization3,4,2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of dEEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution4,5,6 compared to standard dEEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults7,8, children9,10,11, and infants12, in both research and clinical4,5,6,13,14,15 settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other dEEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of dEEG data. The HCGSN features a low-profile electrode pedestal, which, when filled with electrolyte solution, creates a sealed microenvironment and an electrode-scalp interface. In all Geodesic dEEG systems, EEG sensors detect changes in voltage originating from the participant's scalp, along with a small amount of electrical noise originating from the room environment. Electrical signals from all sensors of the Geodesic sensor net are received simultaneously by the amplifier, where they are automatically processed, packaged, and sent to the data-acquisition computer (DAC). Once received by the DAC, scalp electrical activity can be isolated from artifacts for analysis using the filtering and artifact detection tools included in the EGI software. Typically, the HCGSN can be used continuously for only up to two hours because the electrolyte solution dries out over time, gradually decreasing the quality of the scalp-electrode interface. In the Parent-Infant Research Lab at the University of Toronto, we are using dEEG to study social cognitive processes including memory, emotion, goals, intentionality, anticipation, and executive functioning in both adult and infant participants.
Neuroscience, Issue 52, Developmental Affective Neuroscience, high density EEG, social cognition, infancy, and parenting
2759
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
3871
Play Button
Spatial Multiobjective Optimization of Agricultural Conservation Practices using a SWAT Model and an Evolutionary Algorithm
Authors: Sergey Rabotyagov, Todd Campbell, Adriana Valcu, Philip Gassman, Manoj Jha, Keith Schilling, Calvin Wolter, Catherine Kling.
Institutions: University of Washington, Iowa State University, North Carolina A&T University, Iowa Geological and Water Survey.
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,5,12,20) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods3,4,9,10,13-15,17-19,22,23,25. In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model7 with a multiobjective evolutionary algorithm SPEA226, and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.
Environmental Sciences, Issue 70, Plant Biology, Civil Engineering, Forest Sciences, Water quality, multiobjective optimization, evolutionary algorithms, cost efficiency, agriculture, development
4009
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Movement Retraining using Real-time Feedback of Performance
Authors: Michael Anthony Hunt.
Institutions: University of British Columbia .
Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes. Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session. This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.
Medicine, Issue 71, Biophysics, Anatomy, Physiology, Physics, Biomedical Engineering, Behavior, Psychology, Kinesiology, Physical Therapy, Musculoskeletal System, Biofeedback, biomechanics, gait, movement, walking, rehabilitation, clinical, training
50182
Play Button
Development of an Audio-based Virtual Gaming Environment to Assist with Navigation Skills in the Blind
Authors: Erin C. Connors, Lindsay A. Yazzolino, Jaime Sánchez, Lotfi B. Merabet.
Institutions: Massachusetts Eye and Ear Infirmary, Harvard Medical School, University of Chile .
Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.
Medicine, Issue 73, Behavior, Neuroscience, Anatomy, Physiology, Neurobiology, Ophthalmology, Psychology, Behavior and Behavior Mechanisms, Technology, Industry, virtual environments, action video games, blind, audio, rehabilitation, indoor navigation, spatial cognitive map, Audio-based Environment Simulator, virtual reality, cognitive psychology, clinical techniques
50272
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Isolation of Pulmonary Artery Smooth Muscle Cells from Neonatal Mice
Authors: Keng Jin Lee, Lyubov Czech, Gregory B. Waypa, Kathryn N. Farrow.
Institutions: Northwestern University Feinberg School of Medicine.
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al.26 that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
Basic Protocol, Issue 80, Muscle, Smooth, Vascular, Cardiovascular Abnormalities, Hypertension, Pulmonary, vascular smooth muscle, pulmonary hypertension, development, phosphodiesterases, cGMP, immunostaining
50889
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
51103
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins
Authors: Savannah E. Sanchez, Daniel A. Cuevas, Jason E. Rostron, Tiffany Y. Liang, Cullen G. Pivaroff, Matthew R. Haynes, Jim Nulton, Ben Felts, Barbara A. Bailey, Peter Salamon, Robert A. Edwards, Alex B. Burgin, Anca M. Segall, Forest Rohwer.
Institutions: San Diego State University, San Diego State University, San Diego State University, San Diego State University, San Diego State University, Argonne National Laboratory, Broad Institute.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Immunology, Issue 100, phenomics, phage, viral metagenome, Multi-phenotype Assay Plates (MAPs), continuous culture, metabolomics
52854
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.