JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Epibatidine blocks eye-specific segregation in ferret dorsal lateral geniculate nucleus during stage III retinal waves.
.
PLoS ONE
PUBLISHED: 03-21-2015
The segregation and maintenance of eye-specific inputs in the dorsal lateral geniculate nucleus (dLGN) during early postnatal development requires the patterned spontaneous activity of retinal waves. In contrast to the development of the mouse, ferret eye-specific segregation is not complete at the start of stage III glutamatergic retinal waves, and the remaining overlap is limited to the C/C1 lamina of the dLGN. To investigate the role of patterned spontaneous activity in this late segregation, we disrupted retinal waves pharmacologically for 5 day windows from postnatal day (P) 10 to P25. Multi-electrode array recordings of the retina in vitro reveal that the cholinergic agonist epibatidine disrupts correlated retinal activity during stage III waves. Epibatidine also prevents the segregation of eye-specific inputs in vivo during that period. Our results reveal a novel role for cholinergic influence on stage III retinal waves as an instructive signal for the continued segregation of eye-specific inputs in the ferret dLGN.
Authors: Onkar S. Dhande, Michael C. Crair.
Published: 04-17-2011
ABSTRACT
The targeting and refinement of RGC projections to the midbrain is a popular and powerful model system for studying how precise patterns of neural connectivity form during development. In mice, retinofugal projections are arranged in a topographic manner and form eye-specific layers in the Lateral Geniculate Nucleus (dLGN) of the thalamus and the Superior Colliculus (SC). The development of these precise patterns of retinofugal projections has typically been studied by labeling populations of RGCs with fluorescent dyes and tracers, such as horseradish peroxidase1-4. However, these methods are too coarse to provide insight into developmental changes in individual RGC axonal arbor morphology that are the basis of retinotopic map formation. They also do not allow for the genetic manipulation of RGCs. Recently, electroporation has become an effective method for providing precise spatial and temporal control for delivery of charged molecules into the retina5-11. Current retinal electroporation protocols do not allow for genetic manipulation and tracing of retinofugal projections of a single or small cluster of RGCs in postnatal mice. It has been argued that postnatal in vivo electroporation is not a viable method for transfecting RGCs since the labeling efficiency is extremely low and hence requires targeting at embryonic ages when RGC progenitors are undergoing differentiation and proliferation6. In this video we describe an in vivo electroporation protocol for targeted delivery of genes, shRNA, and fluorescent dextrans to murine RGCs postnatally. This technique provides a cost effective, fast and relatively easy platform for efficient screening of candidate genes involved in several aspects of neural development including axon retraction, branching, lamination, regeneration and synapse formation at various stages of circuit development. In summary we describe here a valuable tool which will provide further insights into the molecular mechanisms underlying sensory map development.
22 Related JoVE Articles!
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
51017
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
51274
Play Button
An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons
Authors: Dorothy P. Schafer, Emily K. Lehrman, Christopher T. Heller, Beth Stevens.
Institutions: Boston Children's Hospital, Harvard Medical School.
Phagocytosis is a process in which a cell engulfs material (entire cell, parts of a cell, debris, etc.) in its surrounding extracellular environment and subsequently digests this material, commonly through lysosomal degradation. Microglia are the resident immune cells of the central nervous system (CNS) whose phagocytic function has been described in a broad range of conditions from neurodegenerative disease (e.g., beta-amyloid clearance in Alzheimer’s disease) to development of the healthy brain (e.g., synaptic pruning)1-6. The following protocol is an engulfment assay developed to visualize and quantify microglia-mediated engulfment of presynaptic inputs in the developing mouse retinogeniculate system7. While this assay was used to assess microglia function in this particular context, a similar approach may be used to assess other phagocytes throughout the brain (e.g., astrocytes) and the rest of the body (e.g., peripheral macrophages) as well as other contexts in which synaptic remodeling occurs (e.g. ,brain injury/disease).
Neuroscience, Issue 88, Central Nervous System (CNS), Engulfment, Phagocytosis, Microglia, Synapse, Anterograde Tracing, Presynaptic Input, Retinogeniculate System
51482
Play Button
Slow-release Drug Delivery through Elvax 40W to the Rat Retina: Implications for the Treatment of Chronic Conditions
Authors: Lavinia Fiorani, Rita Maccarone, Nilisha Fernando, Linda Colecchi, Silvia Bisti, Krisztina Valter.
Institutions: University of L'Aquila, ARC Centre of Excellence in Vision Science, Australian National University, Australian National University.
Diseases of the retina are difficult to treat as the retina lies deep within the eye. Invasive methods of drug delivery are often needed to treat these diseases. Chronic retinal diseases such as retinal oedema or neovascularization usually require multiple intraocular injections to effectively treat the condition. However, the risks associated with these injections increase with repeated delivery of the drug. Therefore, alternative delivery methods need to be established in order to minimize the risks of reinjection. Several other investigations have developed methods to deliver drugs over extended time, through materials capable of releasing chemicals slowly into the eye. In this investigation, we outline the use of Elvax 40W, a copolymer resin, to act as a vehicle for drug delivery to the adult rat retina. The resin is made and loaded with the drug. The drug-resin complex is then implanted into the vitreous cavity, where it will slowly release the drug over time. This method was tested using 2-amino-4-phosphonobutyrate (APB), a glutamate analogue that blocks the light response of the retina. It was demonstrated that the APB was slowly released from the resin, and was able to block the retinal response by 7 days after implantation. This indicates that slow-release drug delivery using this copolymer resin is effective for treating the retina, and could be used therapeutically with further testing.
Medicine, Issue 91, slow-release drug delivery, Elvax 40W, co-polymer resin, eye, retina, rat, APB, retinal degeneration, treatment of chronic retinal conditions
51563
Play Button
Retrograde Labeling of Retinal Ganglion Cells by Application of Fluoro-Gold on the Surface of Superior Colliculus
Authors: Kin Chiu, Wui-Man Lau, Sze-chun Yeung, Raymond Chuen-Chung Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Retinal ganglion cell (RGC) counting is essential to evaluate retinal degeneration especially in glaucoma. Reliable RGC labeling is fundamental for evaluating the effects of any treatment. In rat, about 98% of RGCs is known to project to the contralateral superior colliculus (SC) (Forrester and Peters, 1967). Applying fluoro-gold (FG) on the surface of SC can label almost all the RGCs, so that we can focus on this most vulnerable retinal neuron in glaucoma. FG is taken up by the axon terminals of retinal ganglion cells and bilaterally transported retrogradely to its somas in the retina. Compare with retrograde labeling of RGC by putting FG at stump of transected optic nerve for 2 days, the interference of RGC survival is minimized. Compare with cresyl violet staining that stains RGCs, amacrine cells and endothelium of the blood vessel in the retinal ganglion cell layer, this labeling method is more specific to the RGC. This video describes the method of retrograde labeling of RGC by applying FG on the surface of SC. The surgical procedures include drilling the skull; aspirating the cortex to expose the SC and applying gelatin sponge over entire dorsal surface of SC are shown. Useful tips for avoiding massive intracranial bleeding and aspiration of the SC have been given.
Neuroscience, Issue 16, Retrograde labeling, retinal ganglion cells, ophthalmology research, superior colliculus, experimental glaucoma
819
Play Button
A Highly Reproducible and Straightforward Method to Perform In Vivo Ocular Enucleation in the Mouse after Eye Opening
Authors: Jeroen Aerts, Julie Nys, Lutgarde Arckens.
Institutions: KU Leuven - University of Leuven.
Enucleation or the surgical removal of an eye can generally be considered as a model for nerve deafferentation. It provides a valuable tool to study the different aspects of visual, cross-modal and developmental plasticity along the mammalian visual system1-4. Here, we demonstrate an elegant and straightforward technique for the removal of one or both eyes in the mouse, which is validated in mice of 20 days old up to adults. Briefly, a disinfected curved forceps is used to clamp the optic nerve behind the eye. Subsequently, circular movements are performed to constrict the optic nerve and remove the eyeball. The advantages of this technique are high reproducibility, minimal to no bleeding, rapid post-operative recovery and a very low learning threshold for the experimenter. Hence, a large amount of animals can be manipulated and processed with minimal amount of effort. The nature of the technique may induce slight damage to the retina during the procedure. This side effect makes this method less suitable as compared to Mahajan et al. (2011)5 if the goal is to collect and analyze retinal tissue. Also, our method is limited to post-eye opening ages (mouse: P10 - 13 onwards) since the eyeball needs to be displaced from the socket without removing the eyelids. The in vivo enucleation technique described in this manuscript has recently been successfully applied with minor modifications in rats and appears useful to study the afferent visual pathway of rodents in general.
Anatomy, Issue 92, Deprivation, visual system, eye, optic nerve, rodent, mouse, neuroplasticity, neuroscience
51936
Play Button
Quantification of Orofacial Phenotypes in Xenopus
Authors: Allyson E. Kennedy, Amanda J. Dickinson.
Institutions: Virginia Commonwealth University.
Xenopus has become an important tool for dissecting the mechanisms governing craniofacial development and defects. A method to quantify orofacial development will allow for more rigorous analysis of orofacial phenotypes upon abrogation with substances that can genetically or molecularly manipulate gene expression or protein function. Using two dimensional images of the embryonic heads, traditional size dimensions-such as orofacial width, height and area- are measured. In addition, a roundness measure of the embryonic mouth opening is used to describe the shape of the mouth. Geometric morphometrics of these two dimensional images is also performed to provide a more sophisticated view of changes in the shape of the orofacial region. Landmarks are assigned to specific points in the orofacial region and coordinates are created. A principle component analysis is used to reduce landmark coordinates to principle components that then discriminate the treatment groups. These results are displayed as a scatter plot in which individuals with similar orofacial shapes cluster together. It is also useful to perform a discriminant function analysis, which statistically compares the positions of the landmarks between two treatment groups. This analysis is displayed on a transformation grid where changes in landmark position are viewed as vectors. A grid is superimposed on these vectors so that a warping pattern is displayed to show where significant landmark positions have changed. Shape changes in the discriminant function analysis are based on a statistical measure, and therefore can be evaluated by a p-value. This analysis is simple and accessible, requiring only a stereoscope and freeware software, and thus will be a valuable research and teaching resource.
Developmental Biology, Issue 93, Orofacial quantification, geometric morphometrics, Xenopus, orofacial development, orofacial defects, shape changes, facial dimensions
52062
Play Button
Glutamate and Hypoxia as a Stress Model for the Isolated Perfused Vertebrate Retina
Authors: Kai Januschowski, Sebastian Müller, Carlo Krupp, Martin S. Spitzer, José Hurst, Maximilian Schultheiss, Karl-Ulrich Bartz-Schmidt, Peter Szurman, Sven Schnichels.
Institutions: University Eye Hospital Tübingen.
Neuroprotection has been a strong field of investigation in ophthalmological research in the past decades and affects diseases such as glaucoma, retinal vascular occlusion, retinal detachment, and diabetic retinopathy. It was the object of this study to introduce a standardized stress model for future preclinical therapeutic testing. Bovine retinas were prepared and perfused with an oxygen saturated standard solution, and the ERG was recorded. After recording stable b-waves, hypoxia (pure N2) or glutamate stress (250 µm glutamate) was exerted for 45 min. To investigate the effects on photoreceptor function alone, 1 mM aspartate was added to obtain a-waves. ERG-recovery was monitored for 75 min. For hypoxia, a decrease in a-wave amplitude of 87.0% was noted (p <0.01) after an exposition time of 45 min (decrease of 36.5% after the end of the washout p = 0.03). Additionally, an initial decrease in b-wave amplitudes of 87.23% was recorded, that reached statistical significance (p <0.01, decrease of 25.5% at the end of the washout, p = 0.03). For 250 µm glutamate, an initial 7.8% reduction of a-wave amplitudes (p >0.05) followed by a reduction of 1.9% (p >0.05). A reduction of 83.7% of b-wave amplitudes (p <0.01) was noted; after a washout of 75 min the reduction was 2.3% (p = 0.62). In this study, a standardized stress model is presented that may be useful to identify possible neuroprotective effects in the future.
Medicine, Issue 97, Glutamate, Hypoxia, retinal toxicity, electroretinogram, intraocular toxicity, superfused retina
52270
Play Button
Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina
Authors: Manoj Kulkarni, Timm Schubert, Tom Baden, Bernd Wissinger, Thomas Euler, Francois Paquet-Durand.
Institutions: University of Tübingen, University of Tübingen, University of Tübingen, University of Tübingen, University of Tübingen.
Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca2+), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca2+ imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca2+ biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca2+ level. The protocol also allows “in-slice measurement” of absolute Ca2+ concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca2+ signaling as well as the potential involvement of Ca2+ in photoreceptor death and retinal degeneration.
Neuroscience, Issue 99, Ca2+ biosensor, two-photon Ca2+ imaging, cell death, retinal slice preparation, retinal degeneration
52588
Play Button
Using the Electroretinogram to Assess Function in the Rodent Retina and the Protective Effects of Remote Limb Ischemic Preconditioning
Authors: Alice Brandli, Jonathan Stone.
Institutions: University of Sydney.
The ERG is the sum of all retinal activity. The ERG is usually recorded from the cornea, which acts as an antenna that collects and sums signals from the retina. The ERG is a sensitive measure of changes in retinal function that are pan-retinal, but is less effective for detecting damage confined to a small area of retina. In the present work we describe how to record the ‘flash’ ERG, which is the potential generated when the retina is exposed to a brief light flash. We describe methods of anaesthesia, mydriasis and corneal management during recording; how to keep the retina dark adapted; electrode materials and placement; the range and calibration of stimulus energy; recording parameters and the extraction of data. We also describe a method of inducing ischemia in one limb, and how to use the ERG to assess the effects of this remote-from-the-retina ischemia on retinal function after light damage. A two-flash protocol is described which allows isolation of the cone-driven component of the dark-adapted ERG, and thereby the separation of the rod and cone components. Because it can be recorded with techniques that are minimally invasive, the ERG has been widely used in studies of the physiology, pharmacology and toxicology of the retina. We describe one example of this usefulness, in which the ERG is used to assess the function of the light-damaged retina, with and without a neuroprotective intervention; preconditioning by remote ischemia.
Neuroscience, Issue 100, remote ischemic preconditioning, ischemic tolerance, ischemic preconditioning, neuroprotection, retinal degeneration, light damage, photoreceptors, retina, electroretinogram, rat, mouse
52658
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
50443
Play Button
Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
Authors: Jin Y. Huang, Klaus M. Stiefel, Dario A. Protti.
Institutions: University of Sydney , University of Western Sydney, University of Sydney .
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
Neuroscience, Issue 75, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Neurons, Retinal Neurons, Retinal Ganglion Cells, Eye, Retina, Neurosciences, retina, ganglion cells, synaptic conductance, artificial conductance, tetrodotoxin (TTX), patch clamp, dynamic clamp, conductance clamp, electrophysiology, mouse, animal model
50400
Play Button
In utero and ex vivo Electroporation for Gene Expression in Mouse Retinal Ganglion Cells
Authors: Timothy J Petros, Alexandra Rebsam, Carol A Mason.
Institutions: Columbia University College of Physicians and Surgeons, Columbia University College of Physicians and Surgeons.
The retina and its sole output neuron, the retinal ganglion cell (RGC), comprise an excellent model in which to examine biological questions such as cell differentiation, axon guidance, retinotopic organization and synapse formation[1]. One drawback is the inability to efficiently and reliably manipulate gene expression in RGCs in vivo, especially in the otherwise accessible murine visual pathways. Transgenic mice can be used to manipulate gene expression, but this approach is often expensive, time consuming, and can produce unwanted side effects. In chick, in ovo electroporation is used to manipulate gene expression in RGCs for examining retina and RGC development. Although similar electroporation techniques have been developed in neonatal mouse pups[2], adult rats[3], and embryonic murine retinae in vitro[4], none of these strategies allow full characterization of RGC development and axon projections in vivo. To this end, we have developed two applications of electroporation, one in utero and the other ex vivo, to specifically target embryonic murine RGCs[5, 6]. With in utero retinal electroporation, we can misexpress or downregulate specific genes in RGCs and follow their axon projections through the visual pathways in vivo, allowing examination of guidance decisions at intermediate targets, such as the optic chiasm, or at target regions, such as the lateral geniculate nucleus. Perturbing gene expression in a subset of RGCs in an otherwise wild-type background facilitates an understanding of gene function throughout the retinal pathway. Additionally, we have developed a companion technique for analyzing RGC axon growth in vitro. We electroporate embryonic heads ex vivo, collect and incubate the whole retina, then prepare explants from these retinae several days later. Retinal explants can be used in a variety of in vitro assays in order to examine the response of electroporated RGC axons to guidance cues or other factors. In sum, this set of techniques enhances our ability to misexpress or downregulate genes in RGCs and should greatly aid studies examining RGC development and axon projections.
Neuroscience, Developmental Biology, Issue 31, retinal ganglion cells, electroporation, retinal explants, gene transfection, border assays, in utero, ex vivo
1333
Play Button
Microdissection of Zebrafish Embryonic Eye Tissues
Authors: Liyun Zhang, Yuk Fai Leung.
Institutions: Purdue University.
Zebrafish is a popular animal model for research on eye development because of its rapid ex utero development and good fecundity. By 3 days post fertilization (dpf), the larvae will show the first visual response. Many genes have been identified to control a proper eye development, but we are far from a complete understanding of the underlying genetic architecture. Whole genome gene expression profiling is a useful tool to elucidate genetic regulatory network for eye development. However, the small size of the embryonic eye in zebrafish makes it challenging to obtain intact and pure eye tissues for expression analysis. For example, the anterior-posterior length of the eye between day 2 and 3 is only approximately 200-300 μm, while the diameter of the lens is less 100 μm. Also, the retinal pigment epithelium (RPE) underlying the retina is just a single-layer epithelium. While gene expression profiles can be obtained from the whole embryo, they do not accurately represent the expression of these tissues. Therefore pure tissue must be obtained for a successful gene expression profiling of eye development. To address this issue, we have developed an approach to microdissect intact retina and retina with RPE attached from 1-3 dpf, which cover major stages of eye morphogenesis. All procedures can be done with fine forceps and general laboratory supplies under standard stereomicroscopes. For retinal dissection, the single-layer RPE is removed and peeled off by brushing action and the preferential adherence of the RPE remnants to the surface of the culture plate for dissection. For RPE-attached retinal dissection, the adherence of RPE to the dissection plate is removed before the dissection so that the RPE can be completely preserved with the retina. A careful lifting action of this tissue can efficiently separate the presumptive choroid and sclera. The lens can be removed in both cases by a chemically etched tungsten needle. In short, our approach can obtain intact eye tissues and has been successfully utilized to study tissue-specific expression profiles of zebrafish retina1, 2 and retinal pigment epithelium3.
Developmental biology, Issue 40, zebrafish, retina, retinal pigment epithelium, microdissection, development, gene expression, microarrays
2028
Play Button
Patch Clamp Recordings from Mouse Retinal Neurons in a Dark-adapted Slice Preparation
Authors: A. Cyrus Arman, Alapakkam P. Sampath.
Institutions: University of Southern California, University of Southern California Keck School of Medicine.
Our visual experience is initiated when the visual pigment in our retinal photoreceptors absorbs photons of light energy and initiates a cascade of intracellular events that lead to closure of cyclic-nucleotide-gated channels in the cell membrane. The resulting change in membrane potential leads in turn to reductions in the amount of neurotransmitter release from both rod and cone synaptic terminals. To measure how the light-evoked change in photoreceptor membrane potential leads to downstream activity in the retina, scientists have made electrophysiological recordings from retinal slice preparations for decades1,2. In the past these slices have been cut manually with a razor blade on retinal tissue that is attached to filter paper; in recent years another method of slicing has been developed whereby retinal tissue is embedded in low gelling temperature agar and sliced in cool solution with a vibrating microtome3,4. This preparation produces retinal slices with less surface damage and very robust light-evoked responses. Here we document how this procedure can be done under infrared light to avoid bleaching the visual pigment.
Neuroscience, Issue 43, vision, mice, retina, photoreceptor, bipolar cell, slice preparation, patch clamp
2107
Play Button
Isolation of Retinal Stem Cells from the Mouse Eye
Authors: Brenda L.K. Coles, Derek van der Kooy.
Institutions: University of Toronto.
The adult mouse retinal stem cell (RSC) is a rare quiescent cell found within the ciliary epithelium (CE) of the mammalian eye1,2,3. The CE is made up of non-pigmented inner and pigmented outer cell layers, and the clonal RSC colonies that arise from a single pigmented cell from the CE are made up of both pigmented and non-pigmented cells which can be differentiated to form all the cell types of the neural retina and the RPE. There is some controversy about whether all the cells within the spheres all contain at least some pigment4; however the cells are still capable of forming the different cell types found within the neural retina1-3. In some species, such as amphibians and fish, their eyes are capable of regeneration after injury5, however; the mammalian eye shows no such regenerative properties. We seek to identify the stem cell in vivo and to understand the mechanisms that keep the mammalian retinal stem cells quiescent6-8, even after injury as well as using them as a potential source of cells to help repair physical or genetic models of eye injury through transplantation9-12. Here we describe how to isolate the ciliary epithelial cells from the mouse eye and grow them in culture in order to form the clonal retinal stem cell spheres. Since there are no known markers of the stem cell in vivo, these spheres are the only known way to prospectively identify the stem cell population within the ciliary epithelium of the eye.
Cellular Biology, Issue 43, Stem Cells, Eye, Ciliary Epithelium, Tissue Culture, Mouse
2209
Play Button
An Isolated Retinal Preparation to Record Light Response from Genetically Labeled Retinal Ganglion Cells
Authors: Tiffany M Schmidt, Paulo Kofuji.
Institutions: University of Minnesota.
The first steps in vertebrate vision take place when light stimulates the rod and cone photoreceptors of the retina 1. This information is then segregated into what are known as the ON and OFF pathways. The photoreceptors signal light information to the bipolar cells (BCs), which depolarize in response to increases (On BCs) or decreases (Off BCs) in light intensity. This segregation of light information is maintained at the level of the retinal ganglion cells (RGCs), which have dendrites stratifying in either the Off sublamina of the inner plexiform layer (IPL), where they receive direct excitatory input from Off BCs, or stratifying in the On sublamina of the IPL, where they receive direct excitatory input from On BCs. This segregation of information regarding increases or decreases in illumination (the On and Off pathways) is conserved and signaled to the brain in parallel. The RGCs are the output cells of the retina, and are thus an important cell to study in order to understand how light information is signaled to visual nuclei in the brain. Advances in mouse genetics over recent decades have resulted in a variety of fluorescent reporter mouse lines where specific RGC populations are labeled with a fluorescent protein to allow for identification of RGC subtypes 2 3 4 and specific targeting for electrophysiological recording. Here, we present a method for recording light responses from fluorescently labeled ganglion cells in an intact, isolated retinal preparation. This isolated retinal preparation allows for recordings from RGCs where the dendritic arbor is intact and the inputs across the entire RGC dendritic arbor are preserved. This method is applicable across a variety of ganglion cell subtypes and is amenable to a wide variety of single-cell physiological techniques.
Neuroscience, Issue 47, isolated, retina, ganglion cell, electrophysiology, patch clamp, transgenic, mouse, fluorescent
2367
Play Button
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Authors: Zhongshu Tang, Shuihua Zhang, Chunsik Lee, Anil Kumar, Pachiappan Arjunan, Yang Li, Fan Zhang, Xuri Li.
Institutions: NIH, The Second Hospital of Harbin Medical University.
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result.
Neuroscience, Issue 50, optic nerve crush injury, retinal ganglion cell, glaucoma, optic neuropathy, retrograde labeling
2685
Play Button
Multifocal Electroretinograms
Authors: Donnell J. Creel.
Institutions: University of Utah.
A limitation of traditional full-field electroretinograms (ERG) for the diagnosis of retinopathy is lack of sensitivity. Generally, ERG results are normal unless more than approximately 20% of the retina is affected. In practical terms, a patient might be legally blind as a result of macular degeneration or other scotomas and still appear normal, according to traditional full field ERG. An important development in ERGs is the multifocal ERG (mfERG). Erich Sutter adapted the mathematical sequences called binary m-sequences enabling the isolation from a single electrical signal an electroretinogram representing less than each square millimeter of retina in response to a visual stimulus1. Results that are generated by mfERG appear similar to those generated by flash ERG. In contrast to flash ERG, which best generates data appropriate for whole-eye disorders. The basic mfERG result is based on the calculated mathematical average of an approximation of the positive deflection component of traditional ERG response, known as the b-wave1. Multifocal ERG programs measure electrical activity from more than a hundred retinal areas per eye, in a few minutes. The enhanced spatial resolution enables scotomas and retinal dysfunction to be mapped and quantified. In the protocol below, we describe the recording of mfERGs using a bipolar speculum contact lens. Components of mfERG systems vary between manufacturers. For the presentation of visible stimulus, some suitable CRT monitors are available but most systems have adopted the use of flat-panel liquid crystal displays (LCD). The visual stimuli depicted here, were produced by a LCD microdisplay subtending 35 - 40 degrees horizontally and 30 - 35 degrees vertically of visual field, and calibrated to produce multifocal flash intensities of 2.7 cd s m-2. Amplification was 50K. Lower and upper bandpass limits were 10 and 300 Hz. The software packages used were VERIS versions 5 and 6.
Medicine, Issue 58, Multifocal electroretinogram, mfERG, electroretinogram, ERG
3176
Play Button
In Ovo Electroporation in Embryonic Chick Retina
Authors: Mohammed M. Islam, Sung Tae Doh, Li Cai.
Institutions: University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Rutgers University .
Chicken embryonic retina is an excellent tool to study retinal development in higher vertebrates. Because of large size and external development, it is comparatively very easy to manipulate the chick embryonic retina using recombinant DNA/RNA technology. Electroporation of DNA/RNA constructs into the embryonic retina have a great advantage to study gene regulation in retinal stem/progenitor cells during retinal development. Different type of assays such as reporter gene assay, gene over-expression, gene knock down (shRNA) etc. can be performed using the electroporation technique. This video demonstrates targeted retinal injection and in ovo electroporation into the embryonic chick retina at the Hamburger and Hamilton stage 22-23, which is about embryonic day 4 (E4). Here we show a rapid and convenient in ovo electroporation technique whereby a plasmid DNA that expresses green fluorescent protein (GFP) as a marker is directly delivered into the chick embryonic subretinal space and followed by electric pulses to facilitate DNA uptake by retinal stem/progenitor cells. The new method of retinal injection and electroporation at E4 allows the visualization of all retinal cell types, including the late-born neurons1, which has been difficult with the conventional method of injection and electroporation at E1.52.
Developmental Biology, Issue 60, Chick, Embryo, Retina, Electroporation, Injection, Egg, GFP, In Ovo, Development
3792
Play Button
Dissection, Culture, and Analysis of Xenopus laevis Embryonic Retinal Tissue
Authors: Molly J. McDonough, Chelsea E. Allen, Ng-Kwet-Leok A. Ng-Sui-Hing, Brian A. Rabe, Brittany B. Lewis, Margaret S. Saha.
Institutions: College of William and Mary.
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation1-16. The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates 12,14-18. While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells 7,19-23. For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues 8,19-22,24-33. Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level 5,8,21,24,27-30,33-39. Xenopus laevis, a classic model system for the study of early neural development 19,27,29,31-32,40-42, serves as a particularly suitable system for retinal primary cell culture 10,38,43-45. Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction 25,38,43. In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products 10,24,44-45. However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
Developmental Biology, Issue 70, Neuroscience, Cellular Biology, Surgery, Anatomy, Physiology, Ophthalmology, retina, primary cell culture, dissection, confocal microscopy, calcium imaging, fluorescent in situ hybridization, FISH, Xenopus laevis, animal model
4377
Play Button
Simultaneous ex vivo Functional Testing of Two Retinas by in vivo Electroretinogram System
Authors: Frans Vinberg, Vladimir Kefalov.
Institutions: Washington University in St. Louis.
An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types.
Neuroscience, Issue 99, Electrophysiology, electroretinogram, ERG, ex vivo ERG, retina, photoreceptor, rod, cone, a-wave, b-wave, drug testing
52855
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.