JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia.
PUBLISHED: 03-24-2015
Preeclampsia is a pregnancy specific hypertensive disease that confers significant maternal and fetal risks. While the exact pathophysiology of preeclampsia is unknown, it is widely accepted that placental dysfunction is mechanistically involved. Recent studies reported aberrant expression of placenta-specific microRNAs (miRNAs) in preeclampsia including miR-517a/b and miR-517c. Using placental biopsies from a preeclampsia case-control study, we found increased expression of miR-517a/b in term and preterm preeclampsia vs controls, while, miR-517c was increased only in preterm preeclampsia vs controls. To determine if miR-517a/b and miR-517c are regulated by hypoxia, we treated first trimester primary extravillous trophoblast cells (EVTs) with a hypoxia mimetic and found both were induced. To test for a mechanistic role in placental function, we overexpressed miR-517a/b or miR-517c in EVTs which resulted in decreased trophoblast invasion. Additionally, we found that miR-517a/b and miR-517c overexpression increased expression of the anti-angiogenic protein, sFLT1. The regulation of sFLT1 is mostly unknown, however, TNFSF15, a cytokine involved in FLT1 splicing, was also increased by miR-517a/b and miR-517c in EVTs. In summary, we demonstrate that miR-517a/b and miR-517c contribute to the development of preeclampsia and suggest that these miRNAs play a critical role in regulating trophoblast and placental function.
Authors: Alison J. Kriegel, Mingyu Liang.
Published: 11-30-2013
In this article we describe a method for colorimetric detection of miRNA in the kidney through in situ hybridization with digoxigenin tagged microRNA probes. This protocol, originally developed by Kloosterman and colleagues for broad use with Exiqon miRNA probes1, has been modified to overcome challenges inherent in miRNA analysis in kidney tissues. These include issues such as structure identification and hard to remove residual probe and antibody. Use of relatively thin, 5 mm thick, tissue sections allowed for clear visualization of kidney structures, while a strong probe signal was retained in cells. Additionally, probe concentration and incubation conditions were optimized to facilitate visualization of microRNA expression with low background and nonspecific signal. Here, the optimized protocol is described, covering the initial tissue collection and preparation through the mounting of slides at the end of the procedure. The basic components of this protocol can be altered for application to other tissues and cell culture models.
16 Related JoVE Articles!
Play Button
Detection of MicroRNAs in Microglia by Real-time PCR in Normal CNS and During Neuroinflammation
Authors: Tatiana Veremeyko, Sarah-Christine Starossom, Howard L. Weiner, Eugene D. Ponomarev.
Institutions: Harvard Medical School.
Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)1. These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)2. Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers3. The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation4 and pathologies such as inflammation5. MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages6 and microglia7. In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during neuroinflammation using experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. The described method will be useful to measure the level of expression of microRNAs in microglia in normal CNS or during neuroinflammation associated with various pathologies including MS, stroke, traumatic injury, Alzheimer's disease and brain tumors.
Immunology, Issue 65, Neuroscience, Genetics, microglia, macrophages, microRNA, brain, mouse, real-time PCR, neuroinflammation
Play Button
Differentiation of a Human Neural Stem Cell Line on Three Dimensional Cultures, Analysis of MicroRNA and Putative Target Genes
Authors: Lara Stevanato, Caroline Hicks, John D. Sinden.
Institutions: ReNeuron.
Neural stem cells (NSCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes under specific local microenvironments. In here, we present a set of methods used for three dimensional (3D) differentiation and miRNA analysis of a clonal human neural stem cell (hNSC) line, currently in clinical trials for stroke disability (NCT01151124 and NCT02117635, HNSCs were derived from an ethical approved first trimester human fetal cortex and conditionally immortalized using retroviral integration of a single copy of the c-mycERTAMconstruct. We describe how to measure axon process outgrowth of hNSCs differentiated on 3D scaffolds and how to quantify associated changes in miRNA expression using PCR array. Furthermore we exemplify computational analysis with the aim of selecting miRNA putative targets. SOX5 and NR4A3 were identified as suitable miRNA putative target of selected significantly down-regulated miRNAs in differentiated hNSC. MiRNA target validation was performed on SOX5 and NR4A3 3’UTRs by dual reporter plasmid transfection and dual luciferase assay.
Developmental Biology, Issue 98, Clinical grade neural stem cells, miRNA profiling and effects, in vitro differentiation, three dimensional culture
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
Play Button
Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs
Authors: Wilson Wong, Ryan Farr, Mugdha Joglekar, Andrzej Januszewski, Anandwardhan Hardikar.
Institutions: The University of Sydney, The University of Sydney.
Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput.
Molecular Biology, Issue 98, microRNA, ncRNA, probe-based assays, high-throughput PCR, Nanofluidics / Open Arrays, reverse-transcription, pre-amplification, qPCR
Play Button
Isolation of Leukocytes from the Human Maternal-fetal Interface
Authors: Yi Xu, Olesya Plazyo, Roberto Romero, Sonia S. Hassan, Nardhy Gomez-Lopez.
Institutions: NICHD/NIH/DHHS, University of Michigan, Michigan State University, Wayne State University, Wayne State University School of Medicine, Wayne State University School of Medicine.
Pregnancy is characterized by the infiltration of leukocytes in the reproductive tissues and at the maternal-fetal interface (decidua basalis and decidua parietalis). This interface is the anatomical site of contact between maternal and fetal tissues; therefore, it is an immunological site of action during pregnancy. Infiltrating leukocytes at the maternal-fetal interface play a central role in implantation, pregnancy maintenance, and timing of delivery. Therefore, phenotypic and functional characterizations of these leukocytes will provide insight into the mechanisms that lead to pregnancy disorders. Several protocols have been described in order to isolate infiltrating leukocytes from the decidua basalis and decidua parietalis; however, the lack of consistency in the reagents, enzymes, and times of incubation makes it difficult to compare these results. Described herein is a novel approach that combines the use of gentle mechanical and enzymatic dissociation techniques to preserve the viability and integrity of extracellular and intracellular markers in leukocytes isolated from the human tissues at the maternal-fetal interface. Aside from immunophenotyping, cell culture, and cell sorting, the future applications of this protocol are numerous and varied. Following this protocol, the isolated leukocytes can be used to determine DNA methylation, expression of target genes, in vitro leukocyte functionality (i.e., phagocytosis, cytotoxicity, T-cell proliferation, and plasticity, etc.), and the production of reactive oxygen species at the maternal-fetal interface. Additionally, using the described protocol, this laboratory has been able to describe new and rare leukocytes at the maternal-fetal interface.
Immunology, Issue 99, Accutase, Decidua Basalis, Decidua Parietalis, Flow Cytometry, Immunophenotyping, Pregnancy
Play Button
Isolation of Small Noncoding RNAs from Human Serum
Authors: Samantha Khoury, Pamela Ajuyah, Nham Tran.
Institutions: University of Technology, Sydney, University of Technology, Sydney, Royal Prince Alfred Hospital.
The analysis of RNA and its expression is a common feature in many laboratories. Of significance is the emergence of small RNAs like microRNAs, which are found in mammalian cells. These small RNAs are potent gene regulators controlling vital pathways such as growth, development and death and much interest has been directed at their expression in bodily fluids. This is due to their dysregulation in human diseases such as cancer and their potential application as serum biomarkers. However, the analysis of miRNA expression in serum may be problematic. In most cases the amount of serum is limiting and serum contains low amounts of total RNA, of which small RNAs only constitute 0.4-0.5%1. Thus the isolation of sufficient amounts of quality RNA from serum is a major challenge to researchers today. In this technical paper, we demonstrate a method which uses only 400 µl of human serum to obtain sufficient RNA for either DNA arrays or qPCR analysis. The advantages of this method are its simplicity and ability to yield high quality RNA. It requires no specialized columns for purification of small RNAs and utilizes general reagents and hardware found in common laboratories. Our method utilizes a Phase Lock Gel to eliminate phenol contamination while at the same time yielding high quality RNA. We also introduce an additional step to further remove all contaminants during the isolation step. This protocol is very effective in isolating yields of total RNA of up to 100 ng/µl from serum but can also be adapted for other biological tissues.
Bioengineering, Issue 88, small noncoding RNA isolation, microRNAs, human serum, qPCR, guanidinium thiocyanate , Phase Lock Gels, arrays
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Cerebrospinal Fluid MicroRNA Profiling Using Quantitative Real Time PCR
Authors: Marco Pacifici, Serena Delbue, Ferdous Kadri, Francesca Peruzzi.
Institutions: LSU Health Sciences Center, University of Milan.
MicroRNAs (miRNAs) constitute a potent layer of gene regulation by guiding RISC to target sites located on mRNAs and, consequently, by modulating their translational repression. Changes in miRNA expression have been shown to be involved in the development of all major complex diseases. Furthermore, recent findings showed that miRNAs can be secreted to the extracellular environment and enter the bloodstream and other body fluids where they can circulate with high stability. The function of such circulating miRNAs remains largely elusive, but systematic high throughput approaches, such as miRNA profiling arrays, have lead to the identification of miRNA signatures in several pathological conditions, including neurodegenerative disorders and several types of cancers. In this context, the identification of miRNA expression profile in the cerebrospinal fluid, as reported in our recent study, makes miRNAs attractive candidates for biomarker analysis. There are several tools available for profiling microRNAs, such as microarrays, quantitative real-time PCR (qPCR), and deep sequencing. Here, we describe a sensitive method to profile microRNAs in cerebrospinal fluids by quantitative real-time PCR. We used the Exiqon microRNA ready-to-use PCR human panels I and II V2.R, which allows detection of 742 unique human microRNAs. We performed the arrays in triplicate runs and we processed and analyzed data using the GenEx Professional 5 software. Using this protocol, we have successfully profiled microRNAs in various types of cell lines and primary cells, CSF, plasma, and formalin-fixed paraffin-embedded tissues.
Medicine, Issue 83, microRNAs, biomarkers, miRNA profiling, qPCR, cerebrospinal fluid, RNA, DNA
Play Button
Electrochemotherapy of Tumours
Authors: Gregor Sersa, Damijan Miklavcic.
Institutions: Institute of Oncology Ljubljana, University of Ljubljana.
Electrochemotherapy is a combined use of certain chemotherapeutic drugs and electric pulses applied to the treated tumour nodule. Local application of electric pulses to the tumour increases drug delivery into cells, specifically at the site of electric pulse application. Drug uptake by delivery of electric pulses is increased for only those chemotherapeutic drugs whose transport through the plasma membrane is impeded. Among many drugs that have been tested so far, bleomycin and cisplatin found their way from preclinical testing to clinical use. Clinical data collected within a number of clinical studies indicate that approximately 80% of the treated cutaneous and subcutaneous tumour nodules of different malignancies are in an objective response, from these, approximately 70% in complete response after a single application of electrochemotherapy. Usually only one treatment is needed, however, electrochemotherapy can be repeated several times every few weeks with equal effectiveness each time. The treatment results in an effective eradication of the treated nodules, with a good cosmetic effect without tissue scarring.
Medicine, Issue 22, electrochemotherapy, electroporation, cisplatin, bleomycin, malignant tumours, cutaneous lesions
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model
Authors: Stefanie Grafmüller, Pius Manser, Harald F. Krug, Peter Wick, Ursula von Mandach.
Institutions: University Hospital Zurich, EMPA Swiss Federal Laboratories for Materials Testing and Research, University of Bern.
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Biomedical Engineering, Issue 76, Medicine, Bioengineering, Anatomy, Physiology, Molecular Biology, Biochemistry, Biophysics, Pharmacology, Obstetrics, Nanotechnology, Placenta, Pharmacokinetics, Nanomedicine, humans, ex vivo perfusion, perfusion, biological barrier, xenobiotics, nanomaterials, clinical model
Play Button
In ovo Expression of MicroRNA in Ventral Chick Midbrain
Authors: Carola Huber, A. Alwin Prem Anand, Manfred Mauz, Peter Künstle, Wolfgang Hupp, Bernhard Hirt, Andrea Wizenmann.
Institutions: University of Tübingen.
Non-coding RNAs are additional players in regulating gene expression. Targeted in ovo electroporation of specific areas provides a unique tool for spatial and temporal control of ectopic microRNA expression. However, ventral brain structures like ventral midbrain are rather difficult to reach for any manipulations. Here, we demonstrate an efficient way to electroporate miRNA into ventral midbrain using thin platinum electrodes. This method offers a reliable way to transfect specific areas of the midbrain and a useful tool for in vivo studies.
Neuroscience, Issue 79, Central Nervous System, neural development, chick embryo, microRNA, electroporation
Play Button
MicroRNA Detection in Prostate Tumors by Quantitative Real-time PCR (qPCR)
Authors: Aida Gordanpour, Robert K. Nam, Linda Sugar, Stephanie Bacopulos, Arun Seth.
Institutions: University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Health Sciences Centre, Toronto, Canada, Sunnybrook Research Institute.
MicroRNAs (miRNAs) are single-stranded, 18–24 nucleotide long, non-coding RNA molecules. They are involved in virtually every cellular process including development1, apoptosis2, and cell cycle regulation3. MiRNAs are estimated to regulate the expression of 30% to 90% of human genes4 by binding to their target messenger RNAs (mRNAs)5. Widespread dysregulation of miRNAs has been reported in various diseases and cancer subtypes6. Due to their prevalence and unique structure, these small molecules are likely to be the next generation of biomarkers, therapeutic agents and/or targets. Methods used to investigate miRNA expression include SYBR green I dye- based as well as Taqman-probe based qPCR. If miRNAs are to be effectively used in the clinical setting, it is imperative that their detection in fresh and/or archived clinical samples be accurate, reproducible, and specific. qPCR has been widely used for validating expression of miRNAs in whole genome analyses such as microarray studies7. The samples used in this protocol were from patients who underwent radical prostatectomy for clinically localized prostate cancer; however other tissues and cell lines can be substituted in. Prostate specimens were snap-frozen in liquid nitrogen after resection. Clinical variables and follow-up information for each patient were collected for subsequent analysis8. Quantification of miRNA levels in prostate tumor samples. The main steps in qPCR analysis of tumors are: Total RNA extraction, cDNA synthesis, and detection of qPCR products using miRNA-specific primers. Total RNA, which includes mRNA, miRNA, and other small RNAs were extracted from specimens using TRIzol reagent. Qiagen's miScript System was used to synthesize cDNA and perform qPCR (Figure 1). Endogenous miRNAs are not polyadenylated, therefore during the reverse transcription process, a poly(A) polymerase polyadenylates the miRNA. The miRNA is used as a template to synthesize cDNA using oligo-dT and Reverse Transcriptase. A universal tag sequence on the 5' end of oligo-dT primers facilitates the amplification of cDNA in the PCR step. PCR product amplification is detected by the level of fluorescence emitted by SYBR Green, a dye which intercalates into double stranded DNA. Specific miRNA primers, along with a Universal Primer that binds to the universal tag sequence will amplify specific miRNA sequences. The miScript Primer Assays are available for over a thousand human-specific miRNAs, and hundreds of murine-specific miRNAs. Relative quantification method was used here to quantify the expression of miRNAs. To correct for variability amongst different samples, expression levels of a target miRNA is normalized to the expression levels of a reference gene. The choice of a gene on which to normalize the expression of targets is critical in relative quantification method of analysis. Examples of reference genes typically used in this capacity are the small RNAs RNU6B, RNU44, and RNU48 as they are considered to be stably expressed across most samples. In this protocol, RNU6B is used as the reference gene.
Cancer Biology, Issue 63, Medicine, cancer, primer assay, Prostate, microRNA, tumor, qPCR
Play Button
Rotating Cell Culture Systems for Human Cell Culture: Human Trophoblast Cells as a Model
Authors: Kevin J. Zwezdaryk, Jessica A. Warner, Heather L. Machado, Cindy A. Morris, Kerstin Höner zu Bentrup.
Institutions: Tulane University Medical School, Tulane University Medical School, Baylor College of Medicine.
The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines1 support our understanding of invasion of the uterine wall2 and remodeling of uterine spiral arteries3,4 by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts5,6. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation7,8,9. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies10,11,12 . The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS-grown cells are able to respond to chemical and molecular gradients in three dimensions (i.e. at their apical, basal, and lateral surfaces) because they are cultured on the surface of porous microcarrier beads. When grown as two-dimensional monolayers on impermeable surfaces like plastic, cells are deprived of this important communication at their basal surface. Consequently, the spatial constraints imposed by the environment profoundly affect how cells sense and decode signals from the surrounding microenvironment, thus implying an important role for the 3-D milieu13. We have used the RCCS to engineer biologically meaningful 3-D models of various human epithelial tissues7,14,15,16. Indeed, many previous reports have demonstrated that cells cultured in the RCCS can assume physiologically relevant phenotypes that have not been possible with other models10,17-21. In summary, culture in the RCCS represents an easy, reproducible, high-throughput platform that provides large numbers of differentiated cells that are amenable to a variety of experimental manipulations. In the following protocol, using EVTs as an example, we clearly describe the steps required to three-dimensionally culture adherent cells in the RCCS.
Bioengineering, Issue 59, Extravillous trophoblasts, cytotrophoblast, invasion, matrix metalloproteinase, 3-D cell culture, RCCS, ECM, microcarriers
Play Button
Isolation of Primary Mouse Trophoblast Cells and Trophoblast Invasion Assay
Authors: Kathleen A. Pennington, Jessica M. Schlitt, Laura C. Schulz.
Institutions: University of Missouri.
The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al.1, in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation2-3. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 74. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro5-6. The invaded cells are analyzed by immunocytochemistry and stained for counting.
Developmental Biology, Issue 59, placenta, primary trophoblast cells, mouse, invasion assay, matrigel
Play Button
Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface
Authors: Marcia Arenas-Hernandez, Elly N. Sanchez-Rodriguez, Tara N. Mial, Sarah A. Robertson, Nardhy Gomez-Lopez.
Institutions: Wayne State University School of Medicine, The University of Adelaide, Wayne State University School of Medicine, NICHD/NIH/DHHS.
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Immunology, Issue 99, Decidua, Dissociation, Isolation, Leukocytes, Myometrium, Placenta, Pregnancy, Uterus
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.