JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Enteric neurospheres are not specific to neural crest cultures: implications for neural stem cell therapies.
PUBLISHED: 03-24-2015
Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of 'neurospheres' from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres.
Authors: Laura A. Hasselbach, Susan M. Irtenkauf, Nancy W. Lemke, Kevin K. Nelson, Artem D. Berezovsky, Enoch T. Carlton, Andrea D. Transou, Tom Mikkelsen, Ana C. deCarvalho.
Published: 01-07-2014
Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.
19 Related JoVE Articles!
Play Button
One Mouse, Two Cultures: Isolation and Culture of Adult Neural Stem Cells from the Two Neurogenic Zones of Individual Mice
Authors: Tara L. Walker, Gerd Kempermann.
Institutions: Technische Universität Dresden, German Center for Neurodegenerative Diseases (DZNE) Dresden.
The neurosphere assay and the adherent monolayer culture system are valuable tools to determine the potential (proliferation or differentiation) of adult neural stem cells in vitro. These assays can be used to compare the precursor potential of cells isolated from genetically different or differentially treated animals to determine the effects of exogenous factors on neural precursor cell proliferation and differentiation and to generate neural precursor cell lines that can be assayed over continuous passages. The neurosphere assay is traditionally used for the post-hoc identification of stem cells, primarily due to the lack of definitive markers with which they can be isolated from primary tissue and has the major advantage of giving a quick estimate of precursor cell numbers in brain tissue derived from individual animals. Adherent monolayer cultures, in contrast, are not traditionally used to compare proliferation between individual animals, as each culture is generally initiated from the combined tissue of between 5-8 animals. However, they have the major advantage that, unlike neurospheres, they consist of a mostly homogeneous population of precursor cells and are useful for following the differentiation process in single cells. Here, we describe, in detail, the generation of neurosphere cultures and, for the first time, adherent cultures from individual animals. This has many important implications including paired analysis of proliferation and/or differentiation potential in both the subventricular zone (SVZ) and dentate gyrus (DG) of treated or genetically different mouse lines, as well as a significant reduction in animal usage.
Neuroscience, Issue 84, precursor cell, neurosphere, adherent monolayer, subventricular zone, dentate gyrus, adult mouse
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
A Guide to Generating and Using hiPSC Derived NPCs for the Study of Neurological Diseases
Authors: Aaron Topol, Ngoc N. Tran, Kristen J. Brennand.
Institutions: Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai.
Post-mortem studies of neurological diseases are not ideal for identifying the underlying causes of disease initiation, as many diseases include a long period of disease progression prior to the onset of symptoms. Because fibroblasts from patients and healthy controls can be efficiently reprogrammed into human induced pluripotent stem cells (hiPSCs), and subsequently differentiated into neural progenitor cells (NPCs) and neurons for the study of these diseases, it is now possible to recapitulate the developmental events that occurred prior to symptom onset in patients. We present a method by which to efficiently differentiate hiPSCs into NPCs, which in addition to being capable of further differentiation into functional neurons, can also be robustly passaged, freeze-thawed or transitioned to grow as neurospheres, enabling rapid genetic screening to identify the molecular factors that impact cellular phenotypes including replication, migration, oxidative stress and/or apoptosis. Patient derived hiPSC NPCs are a unique platform, ideally suited for the empirical testing of the cellular or molecular consequences of manipulating gene expression.
Medicine, Issue 96, Induced pluripotent stem cells, neural differentiation, neural progenitor cells, psychiatric disease, lentiviral transduction, neurosphere migration assay
Play Button
In Situ Ca2+ Imaging of the Enteric Nervous System
Authors: David E. Fried, Brian D. Gulbransen.
Institutions: Michigan State University.
Reflex behaviors of the intestine are controlled by the enteric nervous system (ENS). The ENS is an integrative network of neurons and glia in two ganglionated plexuses housed in the gut wall. Enteric neurons and enteric glia are the only cell types within the enteric ganglia. The activity of enteric neurons and glia is responsible for coordinating intestinal functions. This protocol describes methods for observing the activity of neurons and glia within the intact ENS by imaging intracellular calcium (Ca2+) transients with fluorescent indicator dyes. Our technical discussion focuses on methods for Ca2+ imaging in whole-mount preparations of the myenteric plexus from the rodent bowel. Bulk loading of ENS whole-mounts with a high-affinity Ca2+ indicator such as Fluo-4 permits measurements of Ca2+ responses in individual neurons or glial cells. These responses can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Ca2+ responses in cells of the ENS are recorded using a fluorescence microscope equipped with a cooled charge-coupled device (CCD) camera. Fluorescence measurements obtained using Ca2+ imaging in whole-mount preparations offer a straightforward means of characterizing the mechanisms and potential functional consequences of Ca2+ responses in enteric neurons and glial cells.
Neuroscience, Issue 95, enteric nervous system, enteric glia, gut, intestine, intestinal nervous system, autonomic, calcium (Ca2+) imaging, peripheral glia, fluorescent, live cell
Play Button
Dual Labeling of Neural Crest Cells and Blood Vessels Within Chicken Embryos Using ChickGFP Neural Tube Grafting and Carbocyanine Dye DiI Injection
Authors: Jean-Marie Delalande, Nikhil Thapar, Alan J. Burns.
Institutions: UCL Institute of Child Health, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Erasmus University Medical Center, Rotterdam.
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system.
Developmental Biology, Issue 99, Intraspecies grafting, chimera, neural tube, vessel painting, carbocyanine dye, vascular network, transgenic GFP chicken, neural crest cells, enteric nervous system
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
Play Button
A Quantitative Cell Migration Assay for Murine Enteric Neural Progenitors
Authors: Karl-Frederik Bergeron, Tatiana Cardinal, Nicolas Pilon.
Institutions: UQAM.
Neural crest cells (NCC) are a transient and multipotent cell population that originates from the dorsal neural tube and migrates extensively throughout the developing vertebrate embryo. In addition to providing peripheral glia and neurons, NCC generate melanocytes as well as most of the cranio-facial skeleton. NCC migration and differentiation is controlled by a combination of their axial origin along the neural tube and their exposure to regionally distinct extracellular cues. Such contribution of extracellular ligands is especially evident during the formation of the enteric nervous system (ENS), a complex interconnected network of neural ganglia that locally controls (among other things) gut muscle movement and intestinal motility. Most of the ENS is derived from a small initial pool of NCC that undertake a long journey in order to colonize - in a rostral to caudal fashion - the entire length of the prospective gut. Among several signaling pathways known to influence enteric NCC colonization, GDNF/RET signaling is recognized as the most important. Indeed, spatiotemporally controlled secretion of the RET ligand GDNF by the gut mesenchyme is chiefly responsible for the attraction and guidance of RET-expressing enteric NCC to and within the embryonic gut. Here, we describe an ex vivo cell migration assay, making use of a transgenic mouse line possessing fluorescently labeled NCC, which allows precise quantification of enteric NCC migration potential in the presence of various growth factors, including GDNF.
Neuroscience, Issue 79, Developmental Biology, Molecular Biology, Neural Crest, Mice, Transgenic, Intestinal Obstruction, Cell Migration Assays, Embryonic Development, life sciences, animal biology, animal models, Cell migration, embryonic explants, collagen gel, Mouse embryo, neural crest cells, growth factors
Play Button
Cryopreservation of Cortical Tissue Blocks for the Generation of Highly Enriched Neuronal Cultures
Authors: Ardeshir S. Rahman, Shaudee Parvinjah, Michael A. Hanna, Pablo R. Helguera, Jorge Busciglio.
Institutions: University of California, Irvine.
In this study, we outline a standardized protocol for the successful cryopreservation and thawing of cortical brain tissue blocks to generate highly enriched neuronal cultures. For this protocol the freezing medium used is 10% dimethyl sulfoxide (DMSO) diluted in Hank's Buffered Salt Solution (HBSS). Blocks of cortical tissue are transferred to cryovials containing the freezing medium and slowly frozen at -1°C/min in a rate-controlled freezing container. Post-thaw processing and dissociation of frozen tissue blocks consistently produced neuronal-enriched cultures which exhibited rapid neuritic growth during the first 5 days in culture and significant expansion of the neuronal network within 10 days. Immunocytochemical staining with the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal marker beta-tubulin class III, revealed high numbers of neurons and astrocytes in the cultures. Generation of neural precursor cell cultures after tissue block dissociation resulted in rapidly expanding neurospheres, which produced large numbers of neurons and astrocytes under differentiating conditions. This simple cryopreservation protocol allows for the rapid, efficient, and inexpensive preservation of cortical brain tissue blocks, which grants increased flexibility for later generation of neuronal, astrocyte, and neuronal precursor cell cultures.
Neuroscience, Issue 45, cryopreservation, neuron, astrocyte, neuronal stem cells, tissue culture, brain cortex
Play Button
Isolation and Expansion of the Adult Mouse Neural Stem Cells Using the Neurosphere Assay
Authors: Hassan Azari, Maryam Rahman, Sharareh Sharififar, Brent A. Reynolds.
Institutions: Shiraz University of Medical Sciences, Shiraz, Iran , University of Florida.
Isolation and expansion of the putative neural stem cells (NSCs) from the adult murine brain was first described by Reynolds and Weiss in 1992 employing a chemically defined serum-free culture system known as the neurosphere assay (NSA). In this assay, the majority of differentiated cell types die within a few days of culture but a small population of growth factor responsive precursor cells undergo active proliferation in the presence of epidermal growth factor (EGF) and/ basic fibroblastic growth factor (bFGF). These cells form colonies of undifferentiated cells called neurospheres, which in turn can be subcultured to expand the pool of neural stem cells. Moreover, the cells can be induced to differentiate, generating the three major cell types of the CNS i.e. neurons, astrocytes, and oligodendrocytes. This assay provides an invaluable tool to supply a consistent, renewable source of undifferentiated CNS precursors, which could be used for in vitro studies and also for therapeutic purposes. This video demonstrates the NSA method to generate and expand NSCs from the adult mouse periventricular region, and provides technical insights to ensure one can achieve reproducible neurosphere cultures. The procedure includes harvesting the brain from the adult mouse, micro-dissection of the periventricular region, tissue preparation and culture in the NSA. The harvested tissue is first chemically digested using trypsin-EDTA and then mechanically dissociated in NSC medium to achieve a single cell suspension and finally plated in the NSA. After 7-10 days in culture, the resulting primary neurospheres are ready for subculture to reach the amount of cells required for future experiments.
Neuroscience, Issue 45, Adult Neural Stem Cells, Neurosphere Assay, Isolation, Expansion
Play Button
Establishing Embryonic Mouse Neural Stem Cell Culture Using the Neurosphere Assay
Authors: Hassan Azari, Sharareh Sharififar, Maryam Rahman, Saeed Ansari, Brent A. Reynolds.
Institutions: Shiraz University of Medical Sciences, Shiraz, Iran , The University of Florida.
In mammalians, stem cells acts as a source of undifferentiated cells to maintain cell genesis and renewal in different tissues and organs during the life span of the animal. They can potentially replace cells that are lost in the aging process or in the process of injury and disease. The existence of neural stem cells (NSCs) was first described by Reynolds and Weiss (1992) in the adult mammalian central nervous system (CNS) using a novel serum‐free culture system, the neurosphere assay (NSA). Using this assay, it is also feasible to isolate and expand NSCs from different regions of the embryonic CNS. These in vitro expanded NSCs are multipotent and can give rise to the three major cell types of the CNS. While the NSA seems relatively simple to perform, attention to the procedures demonstrated here is required in order to achieve reliable and consistent results. This video practically demonstrates NSA to generate and expand NSCs from embryonic day 14-mouse brain tissue and provides technical details so one can achieve reproducible neurosphere cultures. The procedure includes harvesting E14 mouse embryos, brain microdissection to harvest the ganglionic eminences, dissociation of the harvested tissue in NSC medium to gain a single cell suspension, and finally plating cells in NSA culture. After 5-7 days in culture, the resulting primary neurospheres are passaged to further expand the number of the NSCs for future experiments.
Neuroscience, Issue 47, Embryonic Neural Stem Cells, Neurosphere Assay, Isolation, Expansion
Play Button
Neural-Colony Forming Cell Assay: An Assay To Discriminate Bona Fide Neural Stem Cells from Neural Progenitor Cells
Authors: Hassan Azari, Sharon A. Louis, Sharareh Sharififar, Vinata Vedam-Mai, Brent A. Reynolds.
Institutions: University of Florida, Shiraz University of Medical Sciences, Inc..
The neurosphere assay (NSA) is one of the most frequently used methods to isolate, expand and also calculate the frequency of neural stem cells (NSCs). Furthermore, this serum-free culture system has also been employed to expand stem cells and determine their frequency from a variety of tumors and normal tissues. It has been shown recently that a one-to-one relationship does not exist between neurosphere formation and NSCs. This suggests that the NSA as currently applied, overestimates the frequency of NSCs in a mixed population of neural precursor cells isolated from both the embryonic and adult mammalian brain. This video practically demonstrates a novel collagen based semi- solid assay, the neural-colony forming cell assay (N-CFCA), which has the ability to discriminate stem from progenitor cells based on their long-term proliferative potential, and thus provides a method to enumerate NSC frequency. In the N-CFCA, colonies ≥2 mm in diameter are derived from cells that meet all the functional criteria of a NSC, while colonies < 2mm are derived from progenitors. The N-CFCA procedure can be used for cells prepared from different sources including primary and cultured adult or embryonic mouse CNS cells. Here we use cells prepared from passage one neurospheres generated from embryonic day 14 mice brain to perform N-CFCA. The cultures are replenished with proliferation medium every seven days for three weeks to allow the plated cells to exhibit their full proliferative potential and then the frequency of neural progenitor and bona fide neural stem cells is calculated respectively by counting the number of colonies that are < 2mm and the ones that are ≥2mm in reference to the number of cells that were initially plated.
Neuroscience, Issue 49, Stem Cells, Neural Colony Forming Cell Assay, Progenitor Cells, enumeration
Play Button
Generation of Neural Stem Cells from Discarded Human Fetal Cortical Tissue
Authors: Jie Lu, Laurent C. Delli-Bovi, Jonathan Hecht, Rebecca Folkerth, Volney L. Sheen.
Institutions: Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Brigham and Women's Hospital.
Neural stem cells (NSCs) reside along the ventricular zone neuroepithelium during the development of the cortical plate. These early progenitors ultimately give rise to intermediate progenitors and later, the various neuronal and glial cell subtypes that form the cerebral cortex. The capacity to generate and expand human NSCs (so called neurospheres) from discarded normal fetal tissue provides a means with which to directly study the functional aspects of normal human NSC development 1-5. This approach can also be directed toward the generation of NSCs from known neurological disorders, thereby affording the opportunity to identify disease processes that alter progenitor proliferation, migration and differentiation 6-9. We have focused on identifying pathological mechanisms in human Down syndrome NSCs that might contribute to the accelerated Alzheimer's disease phenotype 10,11. Neither in vivo nor in vitro mouse models can replicate the identical repertoire of genes located on human chromosome 21. Here we use a simple and reliable method to isolate Down syndrome NSCs from aborted human fetal cortices and grow them in culture. The methodology provides specific aspects of harvesting the tissue, dissection with limited anatomical landmarks, cell sorting, plating and passaging of human NSCs. We also provide some basic protocols for inducing differentiation of human NSCs into more selective cell subtypes.
Neuroscience, Issue 51, neural stem cell, human, brain, cortex, fetus, cell culture
Play Button
Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation
Authors: Shannon L. Griswold, Peter Y. Lwigale.
Institutions: Rice University .
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo. Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs)1-3. NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube4. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage5-13, melanocytes11,14-20, neurons and glia21-32. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo11,33-37, 2) signals from neighboring cells as they migrate38-44, and 3) the microenvironment of their ultimate destination within the embryo45,46. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis. Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis2,47. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample2,47. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed47. Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody48-56 allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis45. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation40, injection of inhibitory molecules57,58, or genetic manipulation via electroporation of expression plasmids59-61, to identify the response of particular migratory streams of NCCs to perturbations in the embryo's developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.62
Neuroscience, Issue 60, Neural crest, chick, quail, chimera, fate map, cell migration, cell differentiation
Play Button
Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube
Authors: Elise R. Pfaltzgraff, Nathan A. Mundell, Patricia A. Labosky.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, Vanderbilt University Medical Center.
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter23. The method presented here is adapted from protocols optimized for the culture of rat NC11,13. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC2,24-28.
Neuroscience, Issue 64, Developmental Biology, neural crest, explant, cell culture, mouse, embryo
Play Button
An In-vitro Preparation of Isolated Enteric Neurons and Glia from the Myenteric Plexus of the Adult Mouse
Authors: Tricia H. Smith, Joy Ngwainmbi, John R. Grider, William L. Dewey, Hamid I. Akbarali.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.
Neurobiology, Issue 78, Neuroscience, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Biophysics, Pharmacology, Myenteric Plexus, Digestive System, Neurosciences, Enteric nervous system, culture, mouse, patch clamp, action potential, gastrointestinal neuropathies, neurons, glia, tissue, cell culture, animal model
Play Button
Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord
Authors: Andrea Mothe, Charles H. Tator.
Institutions: Toronto Western Research Institute and Krembil Neuroscience Center, Toronto Western Hospital and University of Toronto.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.
Developmental Biology, Issue 99, neuroscience, cellular biology, neural stem cells, spinal cord, cell culture, rat, human
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.