JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Identification of candidate odorant receptors in Asian corn borer Ostrinia furnacalis.
PUBLISHED: 03-25-2015
In lepidopteran insects, odorant receptors are involved in the perception of sex pheromones and general odorants. In the Asian corn borer, Ostrinia furnacalis, although several pheromone receptors have been identified, no general odorant receptor has been reported. In this study, an RNA sequencing analysis was carried out to identify the whole repertoire of the odorant receptors expressed in the antennae of O. furnacalis. Among 12 million reads obtained from the antennae of male and female moths, 52 candidate odorant receptors were identified, including 45 novel ones. Expression levels of candidate odorant receptors were estimated by read mapping and quantitative reverse transcription PCR. These analyses confirmed that the expression of the previously identified pheromone receptors was highly male biased. In contrast, none of the newly identified odorant receptors showed male-biased expression. Three of the newly identified odorant receptors showed female-biased expression. Two of them were the most highly expressed odorant receptors in the female antennae, suggesting that they may be involved in the detection of odorants important for the induction of female-specific behaviors such as oviposition site selection. In addition, candidate genes of 21 ionotropic receptors, 5 gustatory receptors, 2 sensory neuron membrane proteins, and 26 odorant degrading enzymes were identified. Our results provide a basis for further analysis of the chemosensory system in the Ostrinia species.
Analyzing the physiological responses of olfactory sensory neurons (OSN) when stimulated with specific ligands is critical to understand the basis of olfactory-driven behaviors and their modulation. These coding properties depend heavily on the initial interaction between odor molecules and the olfactory receptor (OR) expressed in the OSNs. The identity, specificity and ligand spectrum of the expressed OR are critical. The probability to find the ligand of the OR expressed in an OSN chosen randomly within the epithelium is very low. To address this challenge, this protocol uses genetically tagged mice expressing the fluorescent protein GFP under the control of the promoter of defined ORs. OSNs are located in a tight and organized epithelium lining the nasal cavity, with neighboring cells influencing their maturation and function. Here we describe a method to isolate an intact olfactory epithelium and record through patch-clamp recordings the properties of OSNs expressing defined odorant receptors. The protocol allows one to characterize OSN membrane properties while keeping the influence of the neighboring tissue. Analysis of patch-clamp results yields a precise quantification of ligand/OR interactions, transduction pathways and pharmacology, OSNs' coding properties and their modulation at the membrane level. 
20 Related JoVE Articles!
Play Button
High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity
Authors: Casey Trimmer, Lindsey L. Snyder, Joel D. Mainland.
Institutions: Monell Chemical Senses Center.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
Neuroscience, Issue 88, Firefly luciferase, Renilla Luciferase, Dual-Glo Luciferase Assay, olfaction, Olfactory receptor, Odorant, GPCR, High-throughput
Play Button
Whole Mount Labeling of Cilia in the Main Olfactory System of Mice
Authors: Sonja Oberland, Eva Maria Neuhaus.
Institutions: Universitaetsklinikum Jena, Charite-Universitaetsmedizin Berlin.
The mouse olfactory system comprises 6-10 million olfactory sensory neurons in the epithelium lining the nasal cavity. Olfactory neurons extend a single dendrite to the surface of the epithelium, ending in a structure called dendritic knob. Cilia emanate from this knob into the mucus covering the epithelial surface. The proteins of the olfactory signal transduction cascade are mainly localized in the ciliary membrane, being in direct contact with volatile substances in the environment. For a detailed understanding of olfactory signal transduction, one important aspect is the exact morphological analysis of signaling protein distribution. Using light microscopical approaches in conventional cryosections, protein localization in olfactory cilia is difficult to determine due to the density of ciliary structures. To overcome this problem, we optimized an approach for whole mount labeling of cilia, leading to improved visualization of their morphology and the distribution of signaling proteins. We demonstrate the power of this approach by comparing whole mount and conventional cryosection labeling of Kirrel2. This axon-guidance adhesion molecule is known to localize in a subset of sensory neurons and their axons in an activity-dependent manner. Whole mount cilia labeling revealed an additional and novel picture of the localization of this protein.
Neuroscience, Issue 94, Olfactory system, cilia, immunohistochemistry, signal transduction, Kirrel, olfactory receptor, mOR-EG, en face preparation
Play Button
Imaging Pheromone Sensing in a Mouse Vomeronasal Acute Tissue Slice Preparation
Authors: Julien Brechbühl, Gaëlle Luyet, Fabian Moine, Ivan Rodriguez, Marie-Christine Broillet.
Institutions: University of Lausanne, University of Geneva.
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 19591 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules2 secreted and/or contained in biological fluids3,4, such as urine, a liquid known to be a main source of pheromones3. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions5,6, hierarchical organisations3 and sexual interactions7,8 and are consequently directly correlated with the survival of a given species9,10,11. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO)10,12, a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen13,14 allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs)15. Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection16. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize17,18. Two main vomeronasal receptor families, V1Rs and V2Rs19,20,21,22, are composed respectively by 24023 and 12024 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs)25 and formyl peptide receptors (FPRs)26,27 are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons28 TRPC2 independent transduction channels have been suggested6,29. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line30, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.
Neuroscience, Issue 58, Vomeronasal organ, VNO, pheromone, calcium imaging, tissue slice preparation, floating immunohistochemistry, GFP
Play Button
Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models
Authors: Teresa E. Lever, Sabrina M. Braun, Ryan T. Brooks, Rebecca A. Harris, Loren L. Littrell, Ryan M. Neff, Cameron J. Hinkel, Mitchell J. Allen, Mollie A. Ulsas.
Institutions: University of Missouri, University of Missouri, University of Missouri.
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models.
Medicine, Issue 97, mouse, murine, rodent, swallowing, deglutition, dysphagia, videofluoroscopy, radiation, iohexol, barium, palatability, taste, translational, disease models
Play Button
A Whole Cell Bioreporter Approach to Assess Transport and Bioavailability of Organic Contaminants in Water Unsaturated Systems
Authors: Susan Schamfuß, Thomas R. Neu, Hauke Harms, Lukas Y. Wick.
Institutions: Helmholtz Centre for Environmental Research - UFZ, Helmholtz Centre for Environmental Research - UFZ.
Bioavailability of contaminants is a prerequisite for their effective biodegradation in soil. The average bulk concentration of a contaminant, however, is not an appropriate measure for its availability; bioavailability rather depends on the dynamic interplay of potential mass transfer (flux) of a compound to a microbial cell and the capacity of the latter to degrade the compound. In water-unsaturated parts of the soil, mycelia have been shown to overcome bioavailability limitations by actively transporting and mobilizing organic compounds over the range of centimeters. Whereas the extent of mycelia-based transport can be quantified easily by chemical means, verification of the contaminant-bioavailability to bacterial cells requires a biological method. Addressing this constraint, we chose the PAH fluorene (FLU) as a model compound and developed a water unsaturated model microcosm linking a spatially separated FLU point source and the FLU degrading bioreporter bacterium Burkholderia sartisoli RP037-mChe by a mycelial network of Pythium ultimum. Since the bioreporter expresses eGFP in response of the PAH flux to the cell, bacterial FLU exposure and degradation could be monitored directly in the microcosms via confocal laser scanning microscopy (CLSM). CLSM and image analyses revealed a significant increase of the eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU thus indicating FLU bioavailability to bacteria after mycelia-mediated transport. CLSM results were supported by chemical analyses in identical microcosms. The developed microcosm proved suitable to investigate contaminant bioavailability and to concomitantly visualize the involved bacteria-mycelial interactions.
Environmental Sciences, Issue 94, PAH, bioavailability, mycelia, translocation, volatility, bioreporter, CLSM, biodegradation, fluorene
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Physiological Recordings and RNA Sequencing of the Gustatory Appendages of the Yellow-fever Mosquito Aedes aegypti
Authors: Jackson T. Sparks, Joseph C. Dickens.
Institutions: United States Department of Agriculture.
Electrophysiological recording of action potentials from sensory neurons of mosquitoes provides investigators a glimpse into the chemical perception of these disease vectors. We have recently identified a bitter sensing neuron in the labellum of female Aedes aegypti that responds to DEET and other repellents, as well as bitter quinine, through direct electrophysiological investigation. These gustatory receptor neuron responses prompted our sequencing of total mRNA from both male and female labella and tarsi samples to elucidate the putative chemoreception genes expressed in these contact chemoreception tissues. Samples of tarsi were divided into pro-, meso- and metathoracic subtypes for both sexes. We then validated our dataset by conducting qRT-PCR on the same tissue samples and used statistical methods to compare results between the two methods. Studies addressing molecular function may now target specific genes to determine those involved in repellent perception by mosquitoes. These receptor pathways may be used to screen novel repellents towards disruption of host-seeking behavior to curb the spread of harmful viruses.
Molecular Biology, Issue 94, Gustation, insect, Aedes aegypti, electrophysiology, mosquito, RNA-seq, qRT-PCR, taste, chemosensory
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
Authors: M. Rezaul Karim, Keita Endo, Adrian W Moore, Hiroaki Taniguchi.
Institutions: Doshisha University, RIKEN Brain Science Institute, RIKEN Brain Science Institute.
Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.
Neuroscience, Issue 87, Developmental biology, Drosophila, Whole mount immunolabeling, olfactory receptor neurons, antennae, sensory organ
Play Button
Testing Drosophila Olfaction with a Y-maze Assay
Authors: Mégane M. Simonnet, Martine Berthelot-Grosjean, Yael Grosjean.
Institutions: UMR-6265 CNRS, UMR-1324 INRA, Université de Bourgogne.
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Neuroscience, Issue 88, environmental effects (biological, animal and plant), genetics (animal and plant), life sciences, animal biology, behavioral sciences, Y-maze, olfaction, adult, choice, behavior, Drosophila melanogaster
Play Button
Assaying Surface Expression of Chemosensory Receptors in Heterologous Cells
Authors: Sandeepa Dey, Senmiao Zhan, Hiroaki Matsunami.
Institutions: Duke University, Duke University.
The vivid world of odors is recognized by the sense of olfaction. Olfaction in mice is mediated by a repertoire of about 1200 G Protein Coupled Receptors (GPCRs) 1 that are postulated to bind volatile odorant molecules and converting the extracellular signal into an intracellular signal by coupling with G protein Gαolf. Binding of the odorants to the receptors is thought to follow a combinatorial rule, that is, one odorant may bind several receptors and one receptor may bind several odorants to varying degrees 2. Biochemical, signaling and ligand binding studies have been conveniently carried out for most GPCRs using heterologous cells. However use of heterologous cells for study of odorant receptors, was precluded for a long time since on transfection they failed to export to the surface. Saito et al have demonstrated single membrane pass Receptor Transporting Protein (RTP) family chaperones show enhanced expression in the olfactory sensory neurons and act as chaperones to traffic odorant receptors to the surface in heterologous cells, when co transfected together 3. To carry out biochemical assays for receptors using heterologous cells, one must first determine if the receptor shows robust surface expression in the cell line. This can be assayed by overexpressing the receptors with the chaperone RTP1S followed by live cell staining to fluorescently label the extracellular domain or a tag in the extracellular domain exclusively. Here we demonstrate a protocol to carry out live cell staining that can be used to detect odorant receptors on the surface of HEK293T cells conveniently. In addition, it may also be used to assay for surface expression of other chemosensory receptors or GPCRs.
Neuroscience, Issue 48, heterologous, receptors, cell, surface, staining
Play Button
Electrophysiological Measurements from a Moth Olfactory System
Authors: Zainulabeuddin Syed, Walter S. Leal.
Institutions: University of California, Davis.
Insect olfactory systems provide unique opportunities for recording odorant-induced responses in the forms of electroantennograms (EAG) and single sensillum recordings (SSR), which are summed responses from all odorant receptor neurons (ORNs) located on the antenna and from those housed in individual sensilla, respectively. These approaches have been exploited for getting a better understanding of insect chemical communication. The identified stimuli can then be used as either attractants or repellents in management strategies for insect pests.
Neuroscience, Issue 49, Insect Olfaction, Electroantennogram (EAG), Single Sensillum Recordings (SSR), navel orangeworm
Play Button
Imaging Neuronal Responses in Slice Preparations of Vomeronasal Organ Expressing a Genetically Encoded Calcium Sensor
Authors: Limei Ma, Sachiko Haga-Yamanaka, Qingfeng Elden Yu, Qiang Qiu, SangSeong Kim, C. Ron Yu.
Institutions: Stowers Institute for Medical Research, The University of Kansas School of Medicine.
The vomeronasal organ (VNO) detects chemosensory signals that carry information about the social, sexual and reproductive status of the individuals within the same species 1,2. These intraspecies signals, the pheromones, as well as signals from some predators 3, activate the vomeronasal sensory neurons (VSNs) with high levels of specificity and sensitivity 4. At least three distinct families of G-protein coupled receptors, V1R, V2R and FPR 5-14, are expressed in VNO neurons to mediate the detection of the chemosensory cues. To understand how pheromone information is encoded by the VNO, it is critical to analyze the response profiles of individual VSNs to various stimuli and identify the specific receptors that mediate these responses. The neuroepithelia of VNO are enclosed in a pair of vomer bones. The semi-blind tubular structure of VNO has one open end (the vomeronasal duct) connecting to the nasal cavity. VSNs extend their dendrites to the lumen part of the VNO, where the pheromone cues are in contact with the receptors expressed at the dendritic knobs. The cell bodies of the VSNs form pseudo-stratified layers with V1R and V2R expressed in the apical and basal layers respectively 6-8. Several techniques have been utilized to monitor responses of VSNs to sensory stimuli 4,12,15-19. Among these techniques, acute slice preparation offers several advantages. First, compared to dissociated VSNs 3,17, slice preparations maintain the neurons in their native morphology and the dendrites of the cells stay relatively intact. Second, the cell bodies of the VSNs are easily accessible in coronal slice of the VNO to allow electrophysiology studies and imaging experiments as compared to whole epithelium and whole-mount preparations 12,20. Third, this method can be combined with molecular cloning techniques to allow receptor identification. Sensory stimulation elicits strong Ca2+ influx in VSNs that is indicative of receptor activation 4,21. We thus develop transgenic mice that express G-CaMP2 in the olfactory sensory neurons, including the VSNs 15,22. The sensitivity and the genetic nature of the probe greatly facilitate Ca2+ imaging experiments. This method has eliminated the dye loading process used in previous studies 4,21. We also employ a ligand delivery system that enables application of various stimuli to the VNO slices. The combination of the two techniques allows us to monitor multiple neurons simultaneously in response to large numbers of stimuli. Finally, we have established a semi-automated analysis pipeline to assist image processing.
Neuroscience, Issue 58, Vomeronasal organ, VNO, pheromone, urine, slice preparation, G-CaMP2, calcium imaging
Play Button
Identification of Olfactory Volatiles using Gas Chromatography-Multi-unit Recordings (GCMR) in the Insect Antennal Lobe
Authors: Kelsey J. R. P. Byers, Elischa Sanders, Jeffrey A. Riffell.
Institutions: University of Washington.
All organisms inhabit a world full of sensory stimuli that determine their behavioral and physiological response to their environment. Olfaction is especially important in insects, which use their olfactory systems to respond to, and discriminate amongst, complex odor stimuli. These odors elicit behaviors that mediate processes such as reproduction and habitat selection1-3. Additionally, chemical sensing by insects mediates behaviors that are highly significant for agriculture and human health, including pollination4-6, herbivory of food crops7, and transmission of disease8,9. Identification of olfactory signals and their role in insect behavior is thus important for understanding both ecological processes and human food resources and well-being. To date, the identification of volatiles that drive insect behavior has been difficult and often tedious. Current techniques include gas chromatography-coupled electroantennogram recording (GC-EAG), and gas chromatography-coupled single sensillum recordings (GC-SSR)10-12. These techniques proved to be vital in the identification of bioactive compounds. We have developed a method that uses gas chromatography coupled to multi-channel electrophysiological recordings (termed 'GCMR') from neurons in the antennal lobe (AL; the insect's primary olfactory center)13,14. This state-of-the-art technique allows us to probe how odor information is represented in the insect brain. Moreover, because neural responses to odors at this level of olfactory processing are highly sensitive owing to the degree of convergence of the antenna's receptor neurons into AL neurons, AL recordings will allow the detection of active constituents of natural odors efficiently and with high sensitivity. Here we describe GCMR and give an example of its use. Several general steps are involved in the detection of bioactive volatiles and insect response. Volatiles first need to be collected from sources of interest (in this example we use flowers from the genus Mimulus (Phyrmaceae)) and characterized as needed using standard GC-MS techniques14-16. Insects are prepared for study using minimal dissection, after which a recording electrode is inserted into the antennal lobe and multi-channel neural recording begins. Post-processing of the neural data then reveals which particular odorants cause significant neural responses by the insect nervous system. Although the example we present here is specific to pollination studies, GCMR can be expanded to a wide range of study organisms and volatile sources. For instance, this method can be used in the identification of odorants attracting or repelling vector insects and crop pests. Moreover, GCMR can also be used to identify attractants for beneficial insects, such as pollinators. The technique may be expanded to non-insect subjects as well.
Neuroscience, Issue 72, Neurobiology, Physiology, Biochemistry, Chemistry, Entomlogy, Behavior, electrophysiology, olfaction, olfactory system, insect, multi-channel recording, gas chromatography, pollination, bees, Bombus impatiens, antennae, brain, animal model
Play Button
Vertical T-maze Choice Assay for Arthropod Response to Odorants
Authors: Lukasz Stelinski, Siddharth Tiwari.
Institutions: University of Florida .
Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable.
Biochemistry, Issue 72, Molecular Biology, Basic Protocols, Entomology, Behavior, Eukaryota, Organic Chemicals, Chemical Actions and Uses, Life Sciences (General), Behavioral Sciences, Arthropod behavior, chemical ecology, olfactometer, chemotaxis, olfaction, attraction, repulsion, odorant, T-maze, psyllid, Diaphorina citri, insect, anthropod, insect model
Play Button
Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control
Authors: Soroush Parsa, Viviana Ortiz, Fernando E. Vega.
Institutions: International Center for Tropical Agriculture (CIAT), Cali, Colombia , United States Department of Agriculture, Beltsville, Maryland, USA.
Beauveria bassiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common bean (Phaseolus vulgaris), in preparation for subsequent evaluations of endophytic biological control. Plants are grown from surface-sterilized seeds for two weeks before receiving a B. bassiana treatment of 108 conidia/ml (or water) applied either as a foliar spray or a soil drench. Two weeks later, the plants are harvested and their leaves, stems and roots are sampled to evaluate endophytic fungal colonization. For this, samples are individually surface sterilized, cut into multiple sections, and incubated in potato dextrose agar media for 20 days. The media is inspected every 2-3 days to observe fungal growth associated with plant sections and record the occurrence of B. bassiana to estimate the extent of its endophytic colonization. Analyses of inoculation success compare the occurrence of B. bassiana within a given plant part (i.e. leaves, stems or roots) across treatments and controls. In addition to the inoculation method, the specific outcome of the experiment may depend on the target crop species or variety, the fungal entomopathogen species strain or isolate used, and the plant's growing conditions.
Bioengineering, Issue 74, Plant Biology, Microbiology, Infection, Environmental Sciences, Molecular Biology, Mycology, Entomology, Botany, Pathology, Agriculture, Pest Control, Fungi, Entomopathogen, Endophyte, Pest, Pathogen, Phaseolus vulgaris, Beauveria bassiana, Sustainable Agriculture, hemocytometer, inoculation, fungus
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae
Authors: Maurizio Pellegrino, Takao Nakagawa, Leslie B. Vosshall.
Institutions: Rockefeller University.
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7. Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
JoVE Neuroscience, Issue 36, electrophysiology, sensory neuron, insect, olfaction, extracellular recording
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.