JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.
.
PLoS ONE
PUBLISHED: 03-26-2015
Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR) and insulin resistant (IRR) rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM) deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD) or the NADPH oxidase inhibitor (VAS2870). By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide generation through NADPH oxidase activity may be a common link involved in the endothelial dysfunction associated to insulin resistance and to amylin exposure in CR.
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Published: 10-22-2014
ABSTRACT
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
15 Related JoVE Articles!
Play Button
Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myography
Authors: Lioubov I. Brueggemann, Bharath K. Mani, Jennifer Haick, Kenneth L. Byron.
Institutions: Loyola University Chicago.
Contraction or relaxation of smooth muscle cells within the walls of resistance arteries determines the artery diameter and thereby controls flow of blood through the vessel and contributes to systemic blood pressure. The contraction process is regulated primarily by cytosolic calcium concentration ([Ca2+]cyt), which is in turn controlled by a variety of ion transporters and channels. Ion channels are common intermediates in signal transduction pathways activated by vasoactive hormones to effect vasoconstriction or vasodilation. And ion channels are often targeted by therapeutic agents either intentionally (e.g. calcium channel blockers used to induce vasodilation and lower blood pressure) or unintentionally (e.g. to induce unwanted cardiovascular side effects). Kv7 (KCNQ) voltage-activated potassium channels have recently been implicated as important physiological and therapeutic targets for regulation of smooth muscle contraction. To elucidate the specific roles of Kv7 channels in both physiological signal transduction and in the actions of therapeutic agents, we need to study how their activity is modulated at the cellular level as well as evaluate their contribution in the context of the intact artery. The rat mesenteric arteries provide a useful model system. The arteries can be easily dissected, cleaned of connective tissue, and used to prepare isolated arterial myocytes for patch clamp electrophysiology, or cannulated and pressurized for measurements of vasoconstrictor/vasodilator responses under relatively physiological conditions. Here we describe the methods used for both types of measurements and provide some examples of how the experimental design can be integrated to provide a clearer understanding of the roles of these ion channels in the regulation of vascular tone.
Physiology, Issue 67, Molecular Biology, Medicine, Anatomy, Vascular smooth muscle, mesenteric artery, patch clamp, Kv channel, vasoconstriction, electrophysiology
4263
Play Button
Assessing Murine Resistance Artery Function Using Pressure Myography
Authors: Mohd Shahid, Emmanuel S. Buys.
Institutions: Massachusetts General Hospital, Harvard Medical School.
Pressure myograph systems are exquisitely useful in the functional assessment of small arteries, pressurized to a suitable transmural pressure. The near physiological condition achieved in pressure myography permits in-depth characterization of intrinsic responses to pharmacological and physiological stimuli, which can be extrapolated to the in vivo behavior of the vascular bed. Pressure myograph has several advantages over conventional wire myographs. For example, smaller resistance vessels can be studied at tightly controlled and physiologically relevant intraluminal pressures. Here, we study the ability of 3rd order mesenteric arteries (3-4 mm long), preconstricted with phenylephrine, to vaso-relax in response to acetylcholine. Mesenteric arteries are mounted on two cannulas connected to a pressurized and sealed system that is maintained at constant pressure of 60 mmHg. The lumen and outer diameter of the vessel are continuously recorded using a video camera, allowing real time quantification of the vasoconstriction and vasorelaxation in response to phenylephrine and acetylcholine, respectively. To demonstrate the applicability of pressure myography to study the etiology of cardiovascular disease, we assessed endothelium-dependent vascular function in a murine model of systemic hypertension. Mice deficient in the α1 subunit of soluble guanylate cyclase (sGCα1-/-) are hypertensive when on a 129S6 (S6) background (sGCα1-/-S6) but not when on a C57BL/6 (B6) background (sGCα1-/-B6). Using pressure myography, we demonstrate that sGCα1-deficiency results in impaired endothelium-dependent vasorelaxation. The vascular dysfunction is more pronounced in sGCα1-/-S6 than in sGCα1-/-B6 mice, likely contributing to the higher blood pressure in sGCα1-/-S6 than in sGCα1-/-B6 mice. Pressure myography is a relatively simple, but sensitive and mechanistically useful technique that can be used to assess the effect of various stimuli on vascular contraction and relaxation, thereby augmenting our insight into the mechanisms underlying cardiovascular disease.
Physiology, Issue 76, Biomedical Engineering, Medicine, Biophysics, Bioengineering, Anatomy, Cardiology, Hematology, Vascular Diseases, Cardiovascular System, mice, resistance arteries, pressure myography, myography, myograph, NO-cGMP signaling, signaling, animal model
50328
Play Button
Assessing Myogenic Response and Vasoactivity In Resistance Mesenteric Arteries Using Pressure Myography
Authors: Ravirajsinh N. Jadeja, Vikrant Rachakonda, Zsolt Bagi, Sandeep Khurana.
Institutions: Georgia Regents University, University of Pittsburgh School of Medicine, Georgia Regents University.
Small resistance arteries constrict and dilate respectively in response to increased or decreased intraluminal pressure; this phenomenon known as myogenic response is a key regulator of local blood flow. In isobaric conditions small resistance arteries develop sustained constriction known as myogenic tone (MT), which is a major determinant of systemic vascular resistance (SVR). Hence, ex vivo pressurized preparations of small resistance arteries are major tools to study microvascular function in near-physiological states. To achieve this, a freshly isolated intact segment of a small resistance artery (diameter ~260 μm) is mounted onto two small glass cannulas and pressurized. These arterial preparations retain most in vivo characteristics and permit assessment of vascular tone in real-time. Here we provide a detailed protocol for assessing vasoactivity in pressurized small resistance mesenteric arteries from rats; these arteries develop sustained vasoconstriction - approximately 25% of maximal diameter - when pressurized at 70 mmHg. These arterial preparations may be used to study the effect of investigational compounds on relationship between intra-arterial pressure and vasoactivity and determine changes in microvascular function in animal models of various diseases.
Medicine, Issue 101, Mesenteric Artery, Superior, Arterioles, Muscle, Smooth, Vascular, Hypertension, Hypotension, Pressure myography, myogenic tone, myogenic response, resistance arteries
50997
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
2167
Play Button
A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
Authors: Aamer Sandoo, George D. Kitas.
Institutions: Bangor University, Russells Hall Hospital, University of Manchester.
The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research.
Medicine, Issue 96, Endothelium, Cardiovascular, Flow-mediated dilatation, Carotid intima-media thickness, Atherosclerosis, Nitric oxide, Microvasculature, Laser Doppler Imaging
52339
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
51328
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
50970
Play Button
Isolation of Microvascular Endothelial Tubes from Mouse Resistance Arteries
Authors: Matthew J. Socha, Steven S. Segal.
Institutions: University of Missouri, Dalton Cardiovascular Research Center.
The control of blood flow by the resistance vasculature regulates the supply of oxygen and nutrients concomitant with the removal of metabolic by-products, as exemplified by exercising skeletal muscle. Endothelial cells (ECs) line the intima of all resistance vessels and serve a key role in controlling diameter (e.g. endothelium-dependent vasodilation) and, thereby, the magnitude and distribution of tissue blood flow. The regulation of vascular resistance by ECs is effected by intracellular Ca2+ signaling, which leads to production of diffusible autacoids (e.g. nitric oxide and arachidonic acid metabolites)1-3 and hyperpolarization4,5 that elicit smooth muscle cell relaxation. Thus understanding the dynamics of endothelial Ca2+ signaling is a key step towards understanding mechanisms governing blood flow control. Isolating endothelial tubes eliminates confounding variables associated with blood in the vessel lumen and with surrounding smooth muscle cells and perivascular nerves, which otherwise influence EC structure and function. Here we present the isolation of endothelial tubes from the superior epigastric artery (SEA) using a protocol optimized for this vessel. To isolate endothelial tubes from an anesthetized mouse, the SEA is ligated in situ to maintain blood within the vessel lumen (to facilitate visualizing it during dissection), and the entire sheet of abdominal muscle is excised. The SEA is dissected free from surrounding skeletal muscle fibers and connective tissue, blood is flushed from the lumen, and mild enzymatic digestion is performed to enable removal of adventitia, nerves and smooth muscle cells using gentle trituration. These freshly-isolated preparations of intact endothelium retain their native morphology, with individual ECs remaining functionally coupled to one another, able to transfer chemical and electrical signals intercellularly through gap junctions6,7. In addition to providing new insight into calcium signaling and membrane biophysics, these preparations enable molecular studies of gene expression and protein localization within native microvascular endothelium.
Basic Protocol, Issue 81, endothelial tubes, microcirculation, calcium signaling, resistance vasculature, Confocal microscopy
50759
Play Button
Non-invasive Assessment of Microvascular and Endothelial Function
Authors: Cynthia Cheng, Constantine Daskalakis, Bonita Falkner.
Institutions: Thomas Jefferson University , Thomas Jefferson University, Thomas Jefferson University .
The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBFmax/FBFbase is computed as an estimate of vasodilation, by dividing the mean of the four FBFmax values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVRmax) is calculated as the mean arterial pressure (MAP) divided by FBFmax. Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly. The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal consequences.
Medicine, Issue 71, Anatomy, Physiology, Immunology, Pharmacology, Hematology, Diseases, Health Care, Life sciences, Microcirculation, endothelial dysfunction, capillary density, microvascular function, blood vessels, capillaries, capillary, venous occlusion, circulation, experimental therapeutics, capillaroscopy
50008
Play Button
Imaging Leukocyte Adhesion to the Vascular Endothelium at High Intraluminal Pressure
Authors: Danielle L. Michell, Karen L. Andrews, Kevin J. Woollard, Jaye P.F. Chin-Dusting.
Institutions: Monash University.
Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease2, stroke3 and heart failure4. An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species5. In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers6 however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration7-9. When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry10. Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model9 which enables real-time analysis of leukocyte -endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter11 as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.
Immunology, Issue 54, Leukocyte adhesion, intraluminal pressure, endothelial dysfunction, inflammation, hypertension
3221
Play Button
Mesenteric Artery Contraction and Relaxation Studies Using Automated Wire Myography
Authors: Lakeesha E. Bridges, Cicely L. Williams, Mildred A. Pointer, Emmanuel M. Awumey.
Institutions: North Carolina Central University, Durham, North Carolina Central University, Durham, Wake Forest University School of Medicine.
Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. These small vessels of between 100-400 μm in diameter function primarily in directing blood flow to various organs according to the overall requirements of the body. The rat mesenteric artery has a diameter greater than 100 μm. The myography technique, first described by Mulvay and Halpern1, was based on the method proposed by Bevan and Osher2. The technique provides information about small vessels under isometric conditions, where substantial shortening of the muscle preparation is prevented. Since force production and sensitivity of vessels to different agonists is dependent on the extent of stretch, according to active tension-length relation, it is essential to conduct contraction studies under isometric conditions to prevent compliance of the mounting wires. Stainless steel wires are preferred to tungsten wires because of oxidation of the latter, which affects recorded responses3.The technique allows for the comparison of agonist-induced contractions of mounted vessels to obtain evidence for normal function of vascular smooth muscle cell receptors. We have shown in several studies that isolated mesenteric arteries that are contracted with phenylyephrine relax upon addition of cumulative concentrations of extracellular calcium (Ca2+e). The findings led us to conclude that perivascular sensory nerves, which express the G protein-coupled Ca2+-sensing receptor (CaR), mediate this vasorelaxation response. Using an automated wire myography method, we show here that mesenteric arteries from Wistar, Dahl salt-sensitive(DS) and Dahl salt-resistant (DR) rats respond differently to Ca2+e. Tissues from Wistar rats showed higher Ca2+-sensitivity compared to those from DR and DS. Reduced CaR expression in mesenteric arteries from DS rats correlates with reduced Ca2+e-induced relaxation of isolated, pre-contracted arteries. The data suggest that the CaR is required for relaxation of mesenteric arteries under increased adrenergic tone, as occurs in hypertension, and indicate an inherent defect in the CaR signaling pathway in Dahl animals, which is much more severe in DS. The method is useful in determining vascular reactivity ex vivo in mesenteric resistance arteries and similar small blood vessels and comparisons between different agonists and/or antagonists can be easily and consistently assessed side-by-side6,7,8.
Medicine, Issue 55, cardiovascular, resistant arteries, contraction, relaxation, myography
3119
Play Button
Microiontophoresis and Micromanipulation for Intravital Fluorescence Imaging of the Microcirculation
Authors: Pooneh Bagher, Luis Polo-Parada, Steven S. Segal.
Institutions: University of Missouri, University of Missouri.
Microiontophoresis entails passage of current through a micropipette tip to deliver a solute at a designated site within an experimental preparation. Microiontophoresis can simulate synaptic transmission1 by delivering neurotransmitters and neuropeptides onto neurons reproducibly2. Negligible volume (fluid) displacement avoids mechanical disturbance to the experimental preparation. Adapting these techniques to the microcirculation3 has enabled mechanisms of vasodilation and vasoconstriction to be studied at the microscopic level in vivo4,5. A key advantage of such localized delivery is enabling vasomotor responses to be studied at defined sites within a microvascular network without evoking systemic or reflexive changes in blood pressure and tissue blood flow, thereby revealing intrinsic properties of microvessels. A limitation of microiontophoresis is that the precise concentration of agent delivered to the site of interest is difficult to ascertain6. Nevertheless, its release from the micropipette tip is proportional to the intensity and duration of the ejection current2,7, such that reproducible stimulus-response relationships can be readily determined under defined experimental conditions (described below). Additional factors affecting microiontophoretic delivery include solute concentration and its ionization in solution. The internal diameter of the micropipette tip should be ˜ 1 μm or less to minimize diffusional 'leak', which can be counteracted with a retaining current. Thus an outward (positive) current is used to eject a cation and a negative current used to retain it within the micropipette. Fabrication of micropipettes is facilitated with sophisticated electronic pullers8. Micropipettes are pulled from glass capillary tubes containing a filament that 'wicks' solution into the tip of the micropipette when filled from the back end ("backfilled"). This is done by inserting a microcapillary tube connected to a syringe containing the solution of interest and ejecting the solution into the lumen of the micropipette. Micromanipulators enable desired placement of micropipettes within the experimental preparation. Micromanipulators mounted on a movable base can be positioned around the preparation according to the topography of microvascular networks (developed below). The present protocol demonstrates microiontophoresis of acetylcholine (ACh+ Cl-) onto an arteriole of the mouse cremaster muscle preparation (See associated protocol: JoVE ID#2874) to produce endothelium-dependent vasodilation. Stimulus delivery is synchronized with digitized image acquisition using an electronic trigger. The use of Cx40BAC-GCaMP2 transgenic mice9 enables visualization of intracellular calcium responses underlying vasodilation in arteriolar endothelial cells in the living microcirculation.
Medicine, Issue 52, cremaster muscle, microcirculation, micropipettes, intravital microscopy
2900
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
52389
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.