JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Treatment of near-infrared photodynamic therapy using a liposomally formulated indocyanine green derivative for squamous cell carcinoma.
.
PLoS ONE
PUBLISHED: 04-08-2015
Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model.
Authors: Daniela Meier, Carmen Campanile, Sander M. Botter, Walter Born, Bruno Fuchs.
Published: 03-18-2014
ABSTRACT
In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response1. Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)2. The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis. In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.
16 Related JoVE Articles!
Play Button
Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
Authors: Lucia M.A. Crane, George Themelis, K. Tim Buddingh, Niels J. Harlaar, Rick G. Pleijhuis, Athanasios Sarantopoulos, Ate G.J. van der Zee, Vasilis Ntziachristos, Gooitzen M. van Dam.
Institutions: University Medical Center Groningen, Technical University Munich, University Medical Center Groningen.
The prognosis in virtually all solid tumors depends on the presence or absence of lymph node metastases.1-3 Surgical treatment most often combines radical excision of the tumor with a full lymphadenectomy in the drainage area of the tumor. However, removal of lymph nodes is associated with increased morbidity due to infection, wound breakdown and lymphedema.4,5 As an alternative, the sentinel lymph node procedure (SLN) was developed several decades ago to detect the first draining lymph node from the tumor.6 In case of lymphogenic dissemination, the SLN is the first lymph node that is affected (Figure 1). Hence, if the SLN does not contain metastases, downstream lymph nodes will also be free from tumor metastases and need not to be removed. The SLN procedure is part of the treatment for many tumor types, like breast cancer and melanoma, but also for cancer of the vulva and cervix.7 The current standard methodology for SLN-detection is by peritumoral injection of radiocolloid one day prior to surgery, and a colored dye intraoperatively. Disadvantages of the procedure in cervical and vulvar cancer are multiple injections in the genital area, leading to increased psychological distress for the patient, and the use of radioactive colloid. Multispectral fluorescence imaging is an emerging imaging modality that can be applied intraoperatively without the need for injection of radiocolloid. For intraoperative fluorescence imaging, two components are needed: a fluorescent agent and a quantitative optical system for intraoperative imaging. As a fluorophore we have used indocyanine green (ICG). ICG has been used for many decades to assess cardiac function, cerebral perfusion and liver perfusion.8 It is an inert drug with a safe pharmaco-biological profile. When excited at around 750 nm, it emits light in the near-infrared spectrum around 800 nm. A custom-made multispectral fluorescence imaging camera system was used.9. The aim of this video article is to demonstrate the detection of the SLN using intraoperative fluorescence imaging in patients with cervical and vulvar cancer. Fluorescence imaging is used in conjunction with the standard procedure, consisting of radiocolloid and a blue dye. In the future, intraoperative fluorescence imaging might replace the current method and is also easily transferable to other indications like breast cancer and melanoma.
Medicine, Issue 44, Image-guided surgery, multispectral fluorescence, sentinel lymph node, gynecologic oncology
2225
Play Button
Detecting Abnormalities in Choroidal Vasculature in a Mouse Model of Age-related Macular Degeneration by Time-course Indocyanine Green Angiography
Authors: Sandeep Kumar, Zachary Berriochoa, Alex D. Jones, Yingbin Fu.
Institutions: University of Utah Health Sciences Center, University of Utah Health Sciences Center.
Indocyanine Green Angiography (or ICGA) is a technique performed by ophthalmologists to diagnose abnormalities of the choroidal and retinal vasculature of various eye diseases such as age-related macular degeneration (AMD). ICGA is especially useful to image the posterior choroidal vasculature of the eye due to its capability of penetrating through the pigmented layer with its infrared spectrum. ICGA time course can be divided into early, middle, and late phases. The three phases provide valuable information on the pathology of eye problems. Although time-course ICGA by intravenous (IV) injection is widely used in the clinic for the diagnosis and management of choroid problems, ICGA by intraperitoneal injection (IP) is commonly used in animal research. Here we demonstrated the technique to obtain high-resolution ICGA time-course images in mice by tail-vein injection and confocal scanning laser ophthalmoscopy. We used this technique to image the choroidal lesions in a mouse model of age-related macular degeneration. Although it is much easier to introduce ICG to the mouse vasculature by IP, our data indicate that it is difficult to obtain reproducible ICGA time course images by IP-ICGA. In contrast, ICGA via tail vein injection provides high quality ICGA time-course images comparable to human studies. In addition, we showed that ICGA performed on albino mice gives clearer pictures of choroidal vessels than that performed on pigmented mice. We suggest that time-course IV-ICGA should become a standard practice in AMD research based on animal models.
Medicine, Issue 84, Indocyanine Green Angiography, ICGA, choroid vasculature, age-related macular degeneration, AMD, Polypoidal Choroidal Vasculopathy, PCV, confocal scanning laser ophthalmoscope, IV-ICGA, time-course ICGA, tail-vein injection
51061
Play Button
Tissue-simulating Phantoms for Assessing Potential Near-infrared Fluorescence Imaging Applications in Breast Cancer Surgery
Authors: Rick Pleijhuis, Arwin Timmermans, Johannes De Jong, Esther De Boer, Vasilis Ntziachristos, Gooitzen Van Dam.
Institutions: University Medical Center Groningen, Technical University of Munich.
Inaccuracies in intraoperative tumor localization and evaluation of surgical margin status result in suboptimal outcome of breast-conserving surgery (BCS). Optical imaging, in particular near-infrared fluorescence (NIRF) imaging, might reduce the frequency of positive surgical margins following BCS by providing the surgeon with a tool for pre- and intraoperative tumor localization in real-time. In the current study, the potential of NIRF-guided BCS is evaluated using tissue-simulating breast phantoms for reasons of standardization and training purposes. Breast phantoms with optical characteristics comparable to those of normal breast tissue were used to simulate breast conserving surgery. Tumor-simulating inclusions containing the fluorescent dye indocyanine green (ICG) were incorporated in the phantoms at predefined locations and imaged for pre- and intraoperative tumor localization, real-time NIRF-guided tumor resection, NIRF-guided evaluation on the extent of surgery, and postoperative assessment of surgical margins. A customized NIRF camera was used as a clinical prototype for imaging purposes. Breast phantoms containing tumor-simulating inclusions offer a simple, inexpensive, and versatile tool to simulate and evaluate intraoperative tumor imaging. The gelatinous phantoms have elastic properties similar to human tissue and can be cut using conventional surgical instruments. Moreover, the phantoms contain hemoglobin and intralipid for mimicking absorption and scattering of photons, respectively, creating uniform optical properties similar to human breast tissue. The main drawback of NIRF imaging is the limited penetration depth of photons when propagating through tissue, which hinders (noninvasive) imaging of deep-seated tumors with epi-illumination strategies.
Medicine, Issue 91, Breast cancer, tissue-simulating phantoms, NIRF imaging, tumor-simulating inclusions, fluorescence, intraoperative imaging
51776
Play Button
Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy
Authors: Charles A. Kunos, Jeffrey M. Fabien, John P. Shanahan, Christine Collen, Thierry Gevaert, Kenneth Poels, Robbe Van den Begin, Benedikt Engels, Mark De Ridder.
Institutions: Summa Cancer Institute, Vrije Universiteit Brussel.
Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors.
Medicine, Issue 100, Vero, radiosurgery, stereotactic body radiation, gimbal, dynamic tracking, lung cancer
52875
Play Button
Production, Characterization and Potential Uses of a 3D Tissue-engineered Human Esophageal Mucosal Model
Authors: Nicola H. Green, Bernard M. Corfe, Jonathan P. Bury, Sheila MacNeil.
Institutions: University of Sheffield, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust.
The incidence of both esophageal adenocarcinoma and its precursor, Barrett’s Metaplasia, are rising rapidly in the western world. Furthermore esophageal adenocarcinoma generally has a poor prognosis, with little improvement in survival rates in recent years. These are difficult conditions to study and there has been a lack of suitable experimental platforms to investigate disorders of the esophageal mucosa. A model of the human esophageal mucosa has been developed in the MacNeil laboratory which, unlike conventional 2D cell culture systems, recapitulates the cell-cell and cell-matrix interactions present in vivo and produces a mature, stratified epithelium similar to that of the normal human esophagus. Briefly, the model utilizes non-transformed normal primary human esophageal fibroblasts and epithelial cells grown within a porcine-derived acellular esophageal scaffold. Immunohistochemical characterization of this model by CK4, CK14, Ki67 and involucrin staining demonstrates appropriate recapitulation of the histology of the normal human esophageal mucosa. This model provides a robust, biologically relevant experimental model of the human esophageal mucosa. It can easily be manipulated to investigate a number of research questions including the effectiveness of pharmacological agents and the impact of exposure to environmental factors such as alcohol, toxins, high temperature or gastro-esophageal refluxate components. The model also facilitates extended culture periods not achievable with conventional 2D cell culture, enabling, inter alia, the study of the impact of repeated exposure of a mature epithelium to the agent of interest for up to 20 days. Furthermore, a variety of cell lines, such as those derived from esophageal tumors or Barrett’s Metaplasia, can be incorporated into the model to investigate processes such as tumor invasion and drug responsiveness in a more biologically relevant environment.
Bioengineering, Issue 99, esophagus, epithelium, tissue engineering, 3D construct, esophageal cancer, Barrett’s Metaplasia
52693
Play Button
Fluorescence-quenching of a Liposomal-encapsulated Near-infrared Fluorophore as a Tool for In Vivo Optical Imaging
Authors: Felista L. Tansi, Ronny Rüger, Markus Rabenhold, Frank Steiniger, Alfred Fahr, Ingrid Hilger.
Institutions: Jena University Hospital, Friedrich-Schiller-University Jena, Jena University Hospital.
Optical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity. To circumvent rapid clearance, increase number of dye molecules at the target site, and thereby reduce background autofluorescence, encapsulation of the near-infrared fluorescent dye, DY-676-COOH in liposomes and verification of its potential for in vivo imaging of inflammation was done. DY-676 is known for its ability to self-quench at high concentrations. We first determined the concentration suitable for self-quenching, and then encapsulated this quenching concentration into the aqueous interior of PEGylated liposomes. To substantiate the quenching and activation potential of the liposomes we use a harsh freezing method which leads to damage of liposomal membranes without affecting the encapsulated dye. The liposomes characterized by a high level of fluorescence quenching were termed Lip-Q. We show by experiments with different cell lines that uptake of Lip-Q is predominantly by phagocytosis which in turn enabled the characterization of its potential as a tool for in vivo imaging of inflammation in mice models. Furthermore, we use a zymosan-induced edema model in mice to substantiate the potential of Lip-Q in optical imaging of inflammation in vivo. Considering possible uptake due to inflammation-induced enhanced permeability and retention (EPR) effect, an always-on liposome formulation with low, non-quenched concentration of DY-676-COOH (termed Lip-dQ) and the free DY-676-COOH were compared with Lip-Q in animal trials.
Bioengineering, Issue 95, Drug-delivery, Liposomes, Fluorochromes, Fluorescence-quenching, Optical imaging, Inflammation
52136
Play Button
A Procedure to Observe Context-induced Renewal of Pavlovian-conditioned Alcohol-seeking Behavior in Rats
Authors: Jean-Marie Maddux, Franca Lacroix, Nadia Chaudhri.
Institutions: Concordia University.
Environmental contexts in which drugs of abuse are consumed can trigger craving, a subjective Pavlovian-conditioned response that can facilitate drug-seeking behavior and prompt relapse in abstinent drug users. We have developed a procedure to study the behavioral and neural processes that mediate the impact of context on alcohol-seeking behavior in rats. Following acclimation to the taste and pharmacological effects of 15% ethanol in the home cage, male Long-Evans rats receive Pavlovian discrimination training (PDT) in conditioning chambers. In each daily (Mon-Fri) PDT session, 16 trials each of two different 10 sec auditory conditioned stimuli occur. During one stimulus, the CS+, 0.2 ml of 15% ethanol is delivered into a fluid port for oral consumption. The second stimulus, the CS-, is not paired with ethanol. Across sessions, entries into the fluid port during the CS+ increase, whereas entries during the CS- stabilize at a lower level, indicating that a predictive association between the CS+ and ethanol is acquired. During PDT each chamber is equipped with a specific configuration of visual, olfactory and tactile contextual stimuli. Following PDT, extinction training is conducted in the same chamber that is now equipped with a different configuration of contextual stimuli. The CS+ and CS- are presented as before, but ethanol is withheld, which causes a gradual decline in port entries during the CS+. At test, rats are placed back into the PDT context and presented with the CS+ and CS- as before, but without ethanol. This manipulation triggers a robust and selective increase in the number of port entries made during the alcohol predictive CS+, with no change in responding during the CS-. This effect, referred to as context-induced renewal, illustrates the powerful capacity of contexts associated with alcohol consumption to stimulate alcohol-seeking behavior in response to Pavlovian alcohol cues.
Behavior, Issue 91, Behavioral neuroscience, alcoholism, relapse, addiction, Pavlovian conditioning, ethanol, reinstatement, discrimination, conditioned approach
51898
Play Button
Universal Hand-held Three-dimensional Optoacoustic Imaging Probe for Deep Tissue Human Angiography and Functional Preclinical Studies in Real Time
Authors: Xosé Deán-Ben, Thomas Felix Fehm, Daniel Razansky.
Institutions: Helmholtz Zentrum München, Technische Universität München.
The exclusive combination of high optical contrast and excellent spatial resolution makes optoacoustics (photoacoustics) ideal for simultaneously attaining anatomical, functional and molecular contrast in deep optically opaque tissues. While enormous potential has been recently demonstrated in the application of optoacoustics for small animal research, vast efforts have also been undertaken in translating this imaging technology into clinical practice. We present here a newly developed optoacoustic tomography approach capable of delivering high resolution and spectrally enriched volumetric images of tissue morphology and function in real time. A detailed description of the experimental protocol for operating with the imaging system in both hand-held and stationary modes is provided and showcased for different potential scenarios involving functional and molecular studies in murine models and humans. The possibility for real time visualization in three dimensions along with the versatile handheld design of the imaging probe make the newly developed approach unique among the pantheon of imaging modalities used in today’s preclinical research and clinical practice.
Physiology, Issue 93, Optoacoustic tomography, photoacoustic imaging, hand-held probe, volumetric imaging, real-time tomography, five dimensional imaging, clinical imaging, functional imaging, molecular imaging, preclinical research
51864
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
51653
Play Button
Labeling Stem Cells with Fluorescent Dyes for non-invasive Detection with Optical Imaging
Authors: Sophie Boddington, Tobias D. Henning, Elizabeth J. Sutton, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
Optical imaging (OI) is an easy, fast and inexpensive tool for in vivo monitoring of new stem cell based therapies. The technique is based on ex vivo labeling of stem cells with a fluorescent dye, subsequent intravenous injection of the labeled cells and visualization of their accumulation in specific target organs or pathologies. The presented technique demonstrates how we label human mesenchymal stem cells (hMSC) by simple incubation with the lipophilic fluorescent dye DiD (C67H103CIN2O3S) and how we label human embryonic stem cells (hESC) with the FDA approved fluorescent dye Indocyanine Green (ICG). The uptake mechanism is via adherence and diffusion of the lypophilic dye across the phospholipid cell membrane bilayer. The labeling efficiency is usually improved if the cells are incubated with the dye in serum-free media as opposed to incubation in serum-containing media. Furthermore, the addition of the transfection agent Protamine Sulfate significantly improves contrast agent uptake.
Cell Biology, Issue 14, stem cells, mesenchymal cells, contrast agent, optical imaging, cell tracking,
686
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
50645
Play Button
Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
Authors: Aimée E. van Dijk, René van Lien, Manon van Eijsden, Reinoud J. B. J. Gemke, Tanja G. M. Vrijkotte, Eco J. de Geus.
Institutions: Academic Medical Center - University of Amsterdam, Public Health Service of Amsterdam (GGD), VU University, VU University Medical Center, VU University, VU University Medical Center.
The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device 1-5, the VU University Ambulatory Monitoring System (VU-AMS, Amsterdam, the Netherlands, www.vu-ams.nl).
Medicine, Issue 74, Neurobiology, Neuroscience, Anatomy, Physiology, Pediatrics, Cardiology, Heart, Central Nervous System, stress (psychological effects, human), effects of stress (psychological, human), sympathetic nervous system, parasympathetic nervous system, autonomic nervous system, ANS, childhood, ambulatory monitoring system, electrocardiogram, ECG, clinical techniques
50073
Play Button
Non-invasive Optical Imaging of the Lymphatic Vasculature of a Mouse
Authors: Holly A. Robinson, SunKuk Kwon, Mary A. Hall, John C. Rasmussen, Melissa B. Aldrich, Eva M. Sevick-Muraca.
Institutions: University of Texas Health Science Center-Houston.
The lymphatic vascular system is an important component of the circulatory system that maintains fluid homeostasis, provides immune surveillance, and mediates fat absorption in the gut. Yet despite its critical function, there is comparatively little understanding of how the lymphatic system adapts to serve these functions in health and disease1. Recently, we have demonstrated the ability to dynamically image lymphatic architecture and lymph "pumping" action in normal human subjects as well as in persons suffering lymphatic dysfunction using trace administration of a near-infrared fluorescent (NIRF) dye and a custom, Gen III-intensified imaging system2-4. NIRF imaging showed dramatic changes in lymphatic architecture and function with human disease. It remains unclear how these changes occur and new animal models are being developed to elucidate their genetic and molecular basis. In this protocol, we present NIRF lymphatic, small animal imaging5,6 using indocyanine green (ICG), a dye that has been used for 50 years in humans7, and a NIRF dye-labeled cyclic albumin binding domain (cABD-IRDye800) peptide that preferentially binds mouse and human albumin8. Approximately 5.5 times brighter than ICG, cABD-IRDye800 has a similar lymphatic clearance profile and can be injected in smaller doses than ICG to achieve sufficient NIRF signals for imaging8. Because both cABD-IRDye800 and ICG bind to albumin in the interstitial space8, they both may depict active protein transport into and within the lymphatics. Intradermal (ID) injections (5-50 μl) of ICG (645 μM) or cABD-IRDye800 (200 μM) in saline are administered to the dorsal aspect of each hind paw and/or the left and right side of the base of the tail of an isoflurane-anesthetized mouse. The resulting dye concentration in the animal is 83-1,250 μg/kg for ICG or 113-1,700 μg/kg for cABD-IRDye800. Immediately following injections, functional lymphatic imaging is conducted for up to 1 hr using a customized, small animal NIRF imaging system. Whole animal spatial resolution can depict fluorescent lymphatic vessels of 100 microns or less, and images of structures up to 3 cm in depth can be acquired9. Images are acquired using V++ software and analyzed using ImageJ or MATLAB software. During analysis, consecutive regions of interest (ROIs) encompassing the entire vessel diameter are drawn along a given lymph vessel. The dimensions for each ROI are kept constant for a given vessel and NIRF intensity is measured for each ROI to quantitatively assess "packets" of lymph moving through vessels.
Immunology, Issue 73, Medicine, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Cancer Biology, Optical imaging, lymphatic imaging, mouse imaging, non-invasive imaging, near-infrared fluorescence, vasculature, circulatory system, lymphatic system, lymph, dermis, injection, imaging, mouse, animal model
4326
Play Button
Simple and Robust in vivo and in vitro Approach for Studying Virus Assembly
Authors: Sonali Chaturvedi, Bongsu Jung, Sharad Gupta, Bahman Anvari, A.L.N. Rao.
Institutions: University of California, Riverside , University of California, Riverside .
In viruses with positive-sense RNA genomes pathogenic to humans, animals and plants, progeny encapsidation into mature and stable virions is a cardinal phase during establishment of infection in a given host. Consequently, study of encapsidation deciphers the information regarding the know-how of the mechanism regulating virus assembly to form infectious virions. Such information is vital in formulating novel methods of curbing virus spread and disease control. Virus encapsidation can be studied in vivo and in vitro. Genome encapsidation in vivo is a highly regulated selective process involving macromolecular interactions and subcellular compartmentalization. Therefore, study leading to dissect events encompassing virus encapsidation in vivo would provide basic knowledge to understand how viruses proliferate and assemble. Recently in vitro encapsidation has been exploited for the research in the area of biomedical imaging and therapeutic applications. Non-enveloped plant viruses stand far ahead in the venture of in vitro encapsidation of the negatively charged foreign material. Brome mosaic virus (BMV), a non-enveloped multicomponent RNA virus pathogenic to plants, has been used as a model system for studying genome packaging in vivo and in vitro. For encapsidation assays in Nicotiana benthamiana plants, Agrobacterium -mediated transient expression, refer to as agroinfiltration, is an efficient and robust technique for the synchronized delivery and expression of multiple components to the same cell. In this approach, a suspension of Agrobacterium tumefaciens cells carrying binary plasmid vectors carrying cDNAs of desiredviral mRNAs is infiltrated into the intercellular space withina leaf using nothing more sophisticated than a 1 ml disposable syringe (without needle). This process results in the transfer of DNA insert into plant cells; the T-DNA insert remains transiently in the nucleus and is then transcribed by the host polymerase II, leading to the transient expression. The resulting mRNA transcript (capped and polyadenylated) is then exported to the cytoplasm for translation. After approximately 24 to 48 hours of incubation,sections of infiltrated leaves can be sampled for microscopyor biochemical analyses. Agroinfiltration permits large numbers (hundreds to thousands) of cells to be transfected simultaneously. For in vitro encapsidation, purified virions of BMV are dissociated into capsid protein by dialyzing against dissociation buffer containing calcium chloride followed by removal of RNA and un-dissociated virions by centrifugation. Genome depleted capsid protein subunits are then reassembled with desired viral genome components or non-viral components such as indocyanine dye.
Immunology, Issue 61, Agrobacterium, Brome mosaic virus, Nicotiana benthamiana, encapsidation, dissociation, in vitro assembly, Nano technology
3645
Play Button
An “All-laser” Endothelial Transplant
Authors: Francesca Rossi, Annalisa Canovetti, Alex Malandrini, Ivo Lenzetti, Roberto Pini, Luca Menabuoni.
Institutions: Italian National Research Council, Nuovo Ospedale Santo Stefano.
The “all laser” assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in the surgery room with optical coherence tomography (OCT), in order to correctly design the donor tissue dimensions. A femtosecond laser is used to cut the donor cornea. The recipient eye is prepared by manual stripping of the descemetic membrane. The donor endothelium is inserted into a Busin-injector, the peripheral inner side is stained with a proper chromophore (a water solution of Indocyanine Green) and then it is pulled in the anterior chamber. The transplanted tissue is placed in the final and correct location and then diode laser welding is induced from outside the eyeball. The procedure has been performed on more than 15 patients evidencing an improvement in surgery performances, with a good recovery of visual acuity and a reduced donor lenticule dislocation event.
Medicine, Issue 101, Endothelium, laser welding, femtosecond laser, corneal transplantation, diode laser, Indocyanine Green, donor tissue thickness, optical coherence tomography
52939
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.