JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Fluctuations of serum neuron specific enolase and protein S-100B concentrations in relation to the use of shunt during carotid endarterectomy.
.
PLoS ONE
PUBLISHED: 04-11-2015
To evaluate the changes in serum neuron specific enolase and protein S-100B, after carotid endarterectomy performed using the conventional technique with routine shunting and patch closure, or eversion technique without the use of shunt.
Authors: Christian Erbel, Deniz Okuyucu, Mohammadreza Akhavanpoor, Li Zhao, Susanne Wangler, Maani Hakimi, Andreas Doesch, Thomas J. Dengler, Hugo A. Katus, Christian A. Gleissner.
Published: 05-06-2014
ABSTRACT
Atherosclerosis is a chronic inflammatory disease of the vasculature. There are various methods to study the inflammatory compound in atherosclerotic lesions. Mouse models are an important tool to investigate inflammatory processes in atherogenesis, but these models suffer from the phenotypic and functional differences between the murine and human immune system. In vitro cell experiments are used to specifically evaluate cell type-dependent changes caused by a substance of interest, but culture-dependent variations and the inability to analyze the influence of specific molecules in the context of the inflammatory compound in atherosclerotic lesions limit the impact of the results. In addition, measuring levels of a molecule of interest in human blood helps to further investigate its clinical relevance, but this represents systemic and not local inflammation. Therefore, we here describe a plaque culture model to study human atherosclerotic lesion biology ex vivo. In short, fresh plaques are obtained from patients undergoing endarterectomy or coronary artery bypass grafting and stored in RPMI medium on ice until usage. The specimens are cut into small pieces followed by random distribution into a 48-well plate, containing RPMI medium in addition to a substance of interest such as cytokines or chemokines alone or in combination for defined periods of time. After incubation, the plaque pieces can be shock frozen for mRNA isolation, embedded in Paraffin or OCT for immunohistochemistry staining or smashed and lysed for western blotting. Furthermore, cells may be isolated from the plaque for flow cytometry analysis. In addition, supernatants can be collected for protein measurement by ELISA. In conclusion, the presented ex vivo model opens the possibility to further study inflammatory lesional biology, which may result in identification of novel disease mechanisms and therapeutic targets.
24 Related JoVE Articles!
Play Button
ALS - Motor Neuron Disease: Mechanism and Development of New Therapies
Authors: Jeffrey D. Rothstein.
Institutions: Johns Hopkins University.
Medicine, Issue 6, Translational Research, Neuroscience, ALS, stem cells, brain, neuron, upper motor neuron, transplantation
245
Play Button
Preparation of Synaptic Plasma Membrane and Postsynaptic Density Proteins Using a Discontinuous Sucrose Gradient
Authors: Marie Kristel Bermejo, Marija Milenkovic, Ali Salahpour, Amy J. Ramsey.
Institutions: University of Toronto.
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960’s, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Neurobiology, Issue 91, brain, synapse, western blot, ultracentrifugation, SPM, PSD
51896
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
52055
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
52127
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
52132
Play Button
Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies
Authors: Matthias Garten, Sophie Aimon, Patricia Bassereau, Gilman E. S. Toombes.
Institutions: Université Pierre et Marie Curie, University of California, San Diego, National Institute of Health.
Giant Unilamellar Vesicles (GUVs) are a popular biomimetic system for studying membrane associated phenomena. However, commonly used protocols to grow GUVs must be modified in order to form GUVs containing functional transmembrane proteins. This article describes two dehydration-rehydration methods — electroformation and gel-assisted swelling — to form GUVs containing the voltage-gated potassium channel, KvAP. In both methods, a solution of protein-containing small unilamellar vesicles is partially dehydrated to form a stack of membranes, which is then allowed to swell in a rehydration buffer. For the electroformation method, the film is deposited on platinum electrodes so that an AC field can be applied during film rehydration. In contrast, the gel-assisted swelling method uses an agarose gel substrate to enhance film rehydration. Both methods can produce GUVs in low (e.g., 5 mM) and physiological (e.g., 100 mM) salt concentrations. The resulting GUVs are characterized via fluorescence microscopy, and the function of reconstituted channels measured using the inside-out patch-clamp configuration. While swelling in the presence of an alternating electric field (electroformation) gives a high yield of defect-free GUVs, the gel-assisted swelling method produces a more homogeneous protein distribution and requires no special equipment.
Biochemistry, Issue 95, Biomimetic model system, Giant Unilamellar Vesicle, reconstitution, ion channel, transmembrane protein, KvAP, electroformation, gel assisted swelling, agarose, inside-out patch clamp, electrophysiology, fluorescence microscopy
52281
Play Button
A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
Authors: Aamer Sandoo, George D. Kitas.
Institutions: Bangor University, Russells Hall Hospital, University of Manchester.
The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research.
Medicine, Issue 96, Endothelium, Cardiovascular, Flow-mediated dilatation, Carotid intima-media thickness, Atherosclerosis, Nitric oxide, Microvasculature, Laser Doppler Imaging
52339
Play Button
Surgical Technique for the Implantation of Tissue Engineered Vascular Grafts and Subsequent In Vivo Monitoring
Authors: Maxwell T. Koobatian, Carmon Koenigsknecht, Sindhu Row, Stelios Andreadis, Daniel Swartz.
Institutions: State University of New York Buffalo School of Medicine, State University of New York Buffalo School of Medicine, State University of New York Buffalo School of Engineering.
The development of Tissue Engineered Vessels (TEVs) is advanced by the ability to routinely and effectively implant TEVs (4-5 mm in diameter) into a large animal model. A step by-step protocol for inter-positional placement of the TEV and real-time digital assessment of the TEV and native carotid arteries is described here. In vivo monitoring is made possible by the implantation of flow probes, catheters and ultrasonic crystals (capable of recording dynamic diameter changes of implanted TEVs and native carotid arteries) at the time of surgery. Once implanted, researchers can calculate arterial blood flow patterns, invasive blood pressure and artery diameter yielding parameters such as pulse wave velocity, augmentation index, pulse pressures and compliance. Data acquisition is accomplished using a single computer program for analysis throughout the duration of the experiment. Such invaluable data provides insight into TEV matrix remodeling, its resemblance to native/sham controls and overall TEV performance in vivo.
Bioengineering, Issue 98, Vascular surgery, Tissue Engineered Vessel, Surgical Technique, Bio-Engineering, Vascular Grafts, Implantation, Sheep, Large animal model, Carotid Artery, Anastomosis
52354
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
52389
Play Button
Murine Model of Femoral Artery Wire Injury with Implantation of a Perivascular Drug Delivery Patch
Authors: Victoria Le, Collin G. Johnson, Jonathan D. Lee, Aaron B. Baker.
Institutions: University of Texas at Austin.
Percutaneous interventions including balloon angioplasty and stenting have been used to restore blood flow in vessels with occlusive vascular disease. While these therapies lead to the rapid restoration of blood flow, these technologies remain limited by restenosis in the case of bare metal stents and angioplasty, or reduced healing and possibly enhanced risk of thrombosis in the case of drug eluting stents. A key pathophysiological mechanism in the formation of restenosis is intimal hyperplasia caused by the activation of vascular smooth muscle cells and inflammation due to arterial stretch and injury. Surgeries that induce arterial injury in genetically modified mice are useful for the mechanistic study of the vascular response to injury but are often technically challenging to perform in mouse models due to the their small size and lack of appropriate sized devices. We describe two approaches for a surgical technique that induces endothelial denudation and arterial stretch in the femoral artery of mice to produce robust neointimal hyperplasia. The first approach creates an arteriotomy in the muscular branch of the femoral artery to obtain vascular access. Following wire injury this arterial branch is ligated to close the arteriotomy. A second approach creates an arteriotomy in the main femoral artery that is later closed through localized cautery. This method allows for vascular access through a larger vessel and, consequently, provides a less technically demanding procedure that can be used in smaller mice. Following either method of arterial injury, a degradable drug delivery patch can be placed over or around the injured artery to deliver therapeutic agents.
Medicine, Issue 96, vascular injury, neointimal hyperplasia, perivascular drug delivery, wire injury, mouse surgical model of restenosis
52403
Play Button
An Optogenetic Approach for Assessing Formation of Neuronal Connections in a Co-culture System
Authors: Colin T. E. Su, Su-In Yoon, Guillaume Marcy, Eunice W. M. Chin, George J. Augustine, Eyleen L. K. Goh.
Institutions: Duke-NUS Graduate Medical School, Nanyang Technological University.
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.
Developmental Biology, Issue 96, Neuroscience, Channelrhodopsin-2, Co-culture, Neurons, Astrocytes, induced Pluripotent Stem Cells, Neural progenitors, Differentiation, Cell culture, Cortex
52408
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
51706
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
51653
Play Button
Assessing Cerebral Autoregulation via Oscillatory Lower Body Negative Pressure and Projection Pursuit Regression
Authors: J. Andrew Taylor, Can Ozan Tan, J. W. Hamner.
Institutions: Harvard Medical School, Spaulding Hospital Cambridge.
The process by which cerebral perfusion is maintained constant over a wide range of systemic pressures is known as “cerebral autoregulation.” Effective dampening of flow against pressure changes occurs over periods as short as ~15 sec and becomes progressively greater over longer time periods. Thus, slower changes in blood pressure are effectively blunted and faster changes or fluctuations pass through to cerebral blood flow relatively unaffected. The primary difficulty in characterizing the frequency dependence of cerebral autoregulation is the lack of prominent spontaneous fluctuations in arterial pressure around the frequencies of interest (less than ~0.07 Hz or ~15 sec). Oscillatory lower body negative pressure (OLBNP) can be employed to generate oscillations in central venous return that result in arterial pressure fluctuations at the frequency of OLBNP. Moreover, Projection Pursuit Regression (PPR) provides a nonparametric method to characterize nonlinear relations inherent in the system without a priori assumptions and reveals the characteristic non-linearity of cerebral autoregulation. OLBNP generates larger fluctuations in arterial pressure as the frequency of negative pressure oscillations become slower; however, fluctuations in cerebral blood flow become progressively lesser. Hence, the PPR shows an increasingly more prominent autoregulatory region at OLBNP frequencies of 0.05 Hz and below (20 sec cycles). The goal of this approach it to allow laboratory-based determination of the characteristic nonlinear relationship between pressure and cerebral flow and could provide unique insight to integrated cerebrovascular control as well as to physiological alterations underlying impaired cerebral autoregulation (e.g., after traumatic brain injury, stroke, etc.).
Medicine, Issue 94, cerebral blood flow, lower body negative pressure, autoregulation, sympathetic nervous system
51082
Play Button
Pressure-polishing Pipettes for Improved Patch-clamp Recording
Authors: Brandon E. Johnson, Austin L. Brown, Miriam B. Goodman.
Institutions: Stanford University School of Medicine.
Pressure-polishing is a method for shaping glass pipettes for patch-clamp recording. We first developed this method for fabricating pipettes suitable for recording from small (<3 m) neuronal cell bodies. The basic principal is similar to glass-blowing and combines air pressure and heat to modify the shape of patch pipettes prepared by a conventional micropipette puller. It can be applied to so-called soft (soda lime) and hard (borosilicate) glasses. Generally speaking, pressure polishing can reduce pipette resistance by 25% without decreasing the diameter of the tip opening (Goodman and Lockery, 2000). It can be applied to virtually any type of glass and requires only the addition of a high-pressure valve and fitting to a microforge. This technique is essential for recording from ultrasmall cells (<5 m) and can also improve single-channel recording by minimizing pipette resistance. The blunt shape is also useful for perforated-patch clamp recording since this tip shape results in a larger membrane bleb available for perforation.
Basic Protocols, Issue 20, electrophysiology, patch clamp, voltage clamp, biophysics, gigaseal, ion channels
964
Play Button
Single Molecule Methods for Monitoring Changes in Bilayer Elastic Properties
Authors: Helgi Ingolfson, Ruchi Kapoor, Shemille A. Collingwood, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College of Cornell University.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds.
Cellular Biology, Issue 21, Springer Protocols, Membrane Biophysics, Gramicidin Channels, Artificial Bilayers, Bilayer Elastic Properties,
1032
Play Button
Anterior Cervical Discectomy and Fusion in the Ovine Model
Authors: Tony Goldschlager, Jeffrey V. Rosenfeld, Ian R. Young, Graham Jenkin.
Institutions: Monash University, Monash University.
Anterior cervical discectomy and fusion (ACDF) is the most common surgical operation for cervical radiculopathy and/or myelopathy in patients who have failed conservative treatment1,5. Since the operation was first described by Cloward2 and Smith and Robinson6 in 1958, a variety refinements in technique, graft material and implants have been made3. In particular, there is a need for safe osteoinductive agents that could benefit selected patients. The ovine model has been shown to have anatomical, biomechanical, bone density and radiological properties that are similar to the human counterpart, the most similar level being C3/44. It is therefore an ideal model in which preclinical studies can be performed. In particular this methodology may be useful to researchers interested in evaluating different devices and biologics, including stem cells, for potential application in human spinal surgery.
Medicine, Issue 32, Anterior cervical discectomy, interbody fusion, spine fusion, stem cells, biologics, spine instrumentation, interbody cage
1548
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
2192
Play Button
Culturing and Electrophysiology of Cells on NRCC Patch-clamp Chips
Authors: Christophe Py, Marzia Martina, Robert Monette, Tanya Comas, Mike W. Denhoff, Collin Luk, Naweed I. Syed, Geoff Mealing.
Institutions: National Research Council of Canada, National Research Council of Canada, University of Calgary .
Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike 1. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex 2. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative 3, 4: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening 5. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons 6; recently, we have also reported progress towards interrogating mammalian neurons 7. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre 8, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel.The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion. Figure 1. Principle of measurement using the NRCC patch-clamp chip We detail here the protocols to sterilize and prime the chips, load them with medium, plate them with cells, and finally use them for electrophysiological recordings.
Neuroscience, Issue 60, disease models, pharmaceutical screens, electrophysiological recordings, patch-clamp, silicon planar patch-clamp chip, cultured neurons
3288
Play Button
Using Affordable LED Arrays for Photo-Stimulation of Neurons
Authors: Matthew Valley, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
Neuroscience, Issue 57, Adult neurogenesis, Channelrhodopsin, Neural stem cells, Plasticity, Synapses, Electrophysiology
3379
Play Button
Inducing Dendritic Growth in Cultured Sympathetic Neurons
Authors: Atefeh Ghogha, Donald A. Bruun, Pamela J. Lein.
Institutions: University of California, Davis.
The shape of the dendritic arbor determines the total synaptic input a neuron can receive 1-3, and influences the types and distribution of these inputs 4-6. Altered patterns of dendritic growth and plasticity are associated with impaired neurobehavioral function in experimental models 7, and are thought to contribute to clinical symptoms observed in both neurodevelopmental disorders 8-10 and neurodegenerative diseases 11-13. Such observations underscore the functional importance of precisely regulating dendritic morphology, and suggest that identifying mechanisms that control dendritic growth will not only advance understanding of how neuronal connectivity is regulated during normal development, but may also provide insight on novel therapeutic strategies for diverse neurological diseases. Mechanistic studies of dendritic growth would be greatly facilitated by the availability of a model system that allows neurons to be experimentally switched from a state in which they do not extend dendrites to one in which they elaborate a dendritic arbor comparable to that of their in vivo counterparts. Primary cultures of sympathetic neurons dissociated from the superior cervical ganglia (SCG) of perinatal rodents provide such a model. When cultured in defined medium in the absence of serum and ganglionic glial cells, sympathetic neurons extend a single process which is axonal, and this unipolar state persists for weeks to months in culture 14,15. However, the addition of either bone morphogenetic protein-7 (BMP-7) 16,17 or Matrigel 18 to the culture medium triggers these neurons to extend multiple processes that meet the morphologic, biochemical and functional criteria for dendrites. Sympathetic neurons dissociated from the SCG of perinatal rodents and grown under defined conditions are a homogenous population of neurons 19 that respond uniformly to the dendrite-promoting activity of Matrigel, BMP-7 and other BMPs of the decapentaplegic (dpp) and 60A subfamilies 17,18,20,21. Importantly, Matrigel- and BMP-induced dendrite formation occurs in the absence of changes in cell survival or axonal growth 17,18. Here, we describe how to set up dissociated cultures of sympathetic neurons derived from the SCG of perinatal rats so that they are responsive to the selective dendrite-promoting activity of Matrigel or BMPs.
Neuroscience, Issue 61, Bone morphogenetic proteins (BMPs), Matrigel, dendrite, dendritogenesis, neuronal morphogenesis, sympathetic neurons
3546
Play Button
Training a Sophisticated Microsurgical Technique: Interposition of External Jugular Vein Graft in the Common Carotid Artery in Rats
Authors: Karina Schleimer, Jochen Grommes, Andreas Greiner, Houman Jalaie, Johannes Kalder, Stephan Langer, Thomas A. Koeppel, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
Neointimal hyperplasia is one the primary causes of stenosis in arterialized veins that are of great importance in arterial coronary bypass surgery, in peripheral arterial bypass surgery as well as in arteriovenous fistulas.1-5 The experimental procedure of vein graft interposition in the common carotid artery by using the cuff-technique has been applied in several research projects to examine the aetiology of neointimal hyperplasia and therapeutic options to address it. 6-8 The cuff prevents vessel anastomotic remodeling and induces turbulence within the graft and thereby the development of neointimal hyperplasia. Using the superior caval vein graft is an established small-animal model for venous arterialization experiment.9-11 This current protocol refers to an established jugular vein graft interposition technique first described by Zou et al., 9 as well as others.12-14 Nevertheless, these cited small animal protocols are complicated. To simplify the procedure and to minimize the number of experimental animals needed, a detailed operation protocol by video training is presented. This video should help the novice surgeon to learn both the cuff-technique and the vein graft interposition. Hereby, the right external jugular vein was grafted in cuff-technique in the common carotid artery of 21 female Sprague Dawley rats categorized in three equal groups that were sacrificed on day 21, 42 and 84, respectively. Notably, no donor animals were needed, because auto-transplantations were performed. The survival rate was 100 % at the time point of sacrifice. In addition, the graft patency rate was 60 % for the first 10 operated animals and 82 % for the remaining 11 animals. The blood flow at the time of sacrifice was 8±3 ml/min. In conclusion, this surgical protocol considerably simplifies, optimizes and standardizes this complicated procedure. It gives novice surgeons easy, step-by-step instruction, explaining possible pitfalls, thereby helping them to gain expertise fast and avoid useless sacrifice of experimental animals.
Medicine, Issue 69, Anatomy, Physiology, Immunology, Surgery, microsurgery, neointimal hyperplasia, venous interposition graft, external jugular vein, common carotid artery, rat
4124
Play Button
Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
Authors: Mauricio F. Villamar, Magdalena Sarah Volz, Marom Bikson, Abhishek Datta, Alexandre F. DaSilva, Felipe Fregni.
Institutions: Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Pontifical Catholic University of Ecuador, Charité University Medicine Berlin, The City College of The City University of New York, University of Michigan.
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes. Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets.
Medicine, Issue 77, Neurobiology, Neuroscience, Physiology, Anatomy, Biomedical Engineering, Biophysics, Neurophysiology, Nervous System Diseases, Diagnosis, Therapeutics, Anesthesia and Analgesia, Investigative Techniques, Equipment and Supplies, Mental Disorders, Transcranial direct current stimulation, tDCS, High-definition transcranial direct current stimulation, HD-tDCS, Electrical brain stimulation, Transcranial electrical stimulation (tES), Noninvasive Brain Stimulation, Neuromodulation, non-invasive, brain, stimulation, clinical techniques
50309
Play Button
Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition
Authors: Rafael Jaramillo, Vera Steinmann, Chuanxi Yang, Katy Hartman, Rupak Chakraborty, Jeremy R. Poindexter, Mariela Lizet Castillo, Roy Gordon, Tonio Buonassisi.
Institutions: Massachusetts Institute of Technology, Massachusetts Institute of Technology, Harvard University, Massachusetts Institute of Technology, Harvard University.
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.
Engineering, Issue 99, Solar cells, thin films, thermal evaporation, atomic layer deposition, annealing, tin sulfide
52705
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.