JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats.
PUBLISHED: 04-16-2015
Deep burn wounds undergo a dynamic process known as wound progression that results in a deepening and extension of the initial burn area. The zone of stasis is more likely to develop more severe during wound progression in the presence of hypoperfusion. Hydrogen has been reported to alleviate injury triggered by ischaemia/reperfusion and burns in various organs by selectively quenching oxygen free radicals. The aim of this study was to investigate the possible protective effects of hydrogen against early burn-wound progression.
Authors: Jonathan R. Peterson, Shailesh Agarwal, R. Cameron Brownley, Shawn J. Loder, Kavitha Ranganathan, Paul S. Cederna, Yuji Mishina, Stewart C. Wang, Benjamin Levi.
Published: 08-06-2015
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation.
21 Related JoVE Articles!
Play Button
Generation of a Three-dimensional Full Thickness Skin Equivalent and Automated Wounding
Authors: Angela Rossi, Antje Appelt-Menzel, Szymon Kurdyn, Heike Walles, Florian Groeber.
Institutions: University Hospital Würzburg, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB.
In vitro models are a cost effective and ethical alternative to study cutaneous wound healing processes. Moreover, by using human cells, these models reflect the human wound situation better than animal models. Although two-dimensional models are widely used to investigate processes such as cellular migration and proliferation, models that are more complex are required to gain a deeper knowledge about wound healing. Besides a suitable model system, the generation of precise and reproducible wounds is crucial to ensure comparable results between different test runs. In this study, the generation of a three-dimensional full thickness skin equivalent to study wound healing is shown. The dermal part of the models is comprised of human dermal fibroblast embedded in a rat-tail collagen type I hydrogel. Following the inoculation with human epidermal keratinocytes and consequent culture at the air-liquid interface, a multilayered epidermis is formed on top of the models. To study the wound healing process, we additionally developed an automated wounding device, which generates standardized wounds in a sterile atmosphere.
Bioengineering, Issue 96, Tissue engineering, 3D in vitro models, test system, alternative to animal testing, full thickness, skin equivalent, skin injury, wound model, automation, wounding device
Play Button
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Authors: Lorissa Lamoureux, Jeejabai Radhakrishnan, Raúl J. Gazmuri.
Institutions: Rosalind Franklin University of Medicine and Science.
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.
Medicine, Issue 98, Cardiopulmonary resuscitation, Hemodynamics, Myocardial ischemia, Rats, Reperfusion, Ventilation, Ventricular fibrillation, Ventricular function, Translational medical research
Play Button
Bile Duct Ligation in Mice: Induction of Inflammatory Liver Injury and Fibrosis by Obstructive Cholestasis
Authors: Carmen G. Tag, Sibille Sauer-Lehnen, Sabine Weiskirchen, Erawan Borkham-Kamphorst, René H. Tolba, Frank Tacke, Ralf Weiskirchen.
Institutions: RWTH Aachen University, RWTH Aachen University, RWTH Aachen University.
In most vertebrates, the liver produces bile that is necessary to emulsify absorbed fats and enable the digestion of lipids in the small intestine as well as to excrete bilirubin and other metabolic products. In the liver, the experimental obstruction of the extrahepatic biliary system initiates a complex cascade of pathological events that leads to cholestasis and inflammation resulting in a strong fibrotic reaction originating from the periportal fields. Therefore, surgical ligation of the common bile duct has become the most commonly used model to induce obstructive cholestatic injury in rodents and to study the molecular and cellular events that underlie these pathophysiological mechanisms induced by inappropriate bile flow. In recent years, different surgical techniques have been described that either allow reconnection or reanastomosis after bile duct ligation (BDL), e.g., partial BDL, or other microsurgical methods for specific research questions. However, the most frequently used model is the complete obstruction of the common bile duct that induces a strong fibrotic response after 21 to 28 days. The mortality rate can be high due to infectious complications or technical inaccuracies. Here we provide a detailed surgical procedure for the BDL model in mice that induce a highly reproducible fibrotic response in accordance to the 3R rule for animal welfare postulated by Russel and Burch in 1959.
Medicine, Issue 96, bile duct ligation, cholestasis, bile obstruction, hepatic fibrosis, inflammation, extracellular matrix, jaundice, mouse
Play Button
Long Term Intravital Multiphoton Microscopy Imaging of Immune Cells in Healthy and Diseased Liver Using CXCR6.Gfp Reporter Mice
Authors: Felix Heymann, Patricia M. Niemietz, Julia Peusquens, Can Ergen, Marlene Kohlhepp, Jana C. Mossanen, Carlo Schneider, Michael Vogt, Rene H. Tolba, Christian Trautwein, Christian Martin, Frank Tacke.
Institutions: RWTH University-Hospital Aachen, RWTH University-Hospital Aachen, RWTH Aachen University, RWTH University-Hospital Aachen.
Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a detailed insight into their altered behavior upon liver injury and therefore their potential involvement in disease progression.
Immunology, Issue 97, intravital imaging, TPLSM, two-photon microscopy, liver, migration, microscopy, leukocyte traffic, inflammation
Play Button
Demonstration of the Rat Ischemic Skin Wound Model
Authors: Andrea N. Trujillo, Shannon L. Kesl, Jacob Sherwood, Mack Wu, Lisa J. Gould.
Institutions: University of South Florida, University of South Florida, Kent Memorial Hospital.
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.
Medicine, Issue 98, Wound Healing, ischemia, rat, animal model, chronic wounds, laser Doppler, bipedicled flap
Play Button
The Double-H Maze: A Robust Behavioral Test for Learning and Memory in Rodents
Authors: Robert D. Kirch, Richard C. Pinnell, Ulrich G. Hofmann, Jean-Christophe Cassel.
Institutions: University Hospital Freiburg, UMR 7364 Université de Strasbourg, CNRS, Neuropôle de Strasbourg.
Spatial cognition research in rodents typically employs the use of maze tasks, whose attributes vary from one maze to the next. These tasks vary by their behavioral flexibility and required memory duration, the number of goals and pathways, and also the overall task complexity. A confounding feature in many of these tasks is the lack of control over the strategy employed by the rodents to reach the goal, e.g., allocentric (declarative-like) or egocentric (procedural) based strategies. The double-H maze is a novel water-escape memory task that addresses this issue, by allowing the experimenter to direct the type of strategy learned during the training period. The double-H maze is a transparent device, which consists of a central alleyway with three arms protruding on both sides, along with an escape platform submerged at the extremity of one of these arms. Rats can be trained using an allocentric strategy by alternating the start position in the maze in an unpredictable manner (see protocol 1; §4.7), thus requiring them to learn the location of the platform based on the available allothetic cues. Alternatively, an egocentric learning strategy (protocol 2; §4.8) can be employed by releasing the rats from the same position during each trial, until they learn the procedural pattern required to reach the goal. This task has been proven to allow for the formation of stable memory traces. Memory can be probed following the training period in a misleading probe trial, in which the starting position for the rats alternates. Following an egocentric learning paradigm, rats typically resort to an allocentric-based strategy, but only when their initial view on the extra-maze cues differs markedly from their original position. This task is ideally suited to explore the effects of drugs/perturbations on allocentric/egocentric memory performance, as well as the interactions between these two memory systems.
Behavior, Issue 101, Double-H maze, spatial memory, procedural memory, consolidation, allocentric, egocentric, habits, rodents, video tracking system
Play Button
Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique
Authors: Guillaume Luxardi, Brian Reid, Fernando Ferreira, Pauline Maillard, Min Zhao.
Institutions: University of California, Davis, Universidade do Minho, University of California, Davis Imaging of Dementia and Aging Laboratory, University of California, Davis.
Cells from animals, plants and single cells are enclosed by a barrier called the cell membrane that separates the cytoplasm from the outside. Cell layers such as epithelia also form a barrier that separates the inside from the outside or different compartments of multicellular organisms. A key feature of these barriers is the differential distribution of ions across cell membranes or cell layers. Two properties allow this distribution: 1) membranes and epithelia display selective permeability to specific ions; 2) ions are transported through pumps across cell membranes and cell layers. These properties play crucial roles in maintaining tissue physiology and act as signaling cues after damage, during repair, or under pathological condition. The ion-selective self-referencing microelectrode allows measurements of specific fluxes of ions such as calcium, potassium or sodium at single cell and tissue levels. The microelectrode contains an ionophore cocktail which is selectively permeable to a specific ion. The internal filling solution contains a set concentration of the ion of interest. The electric potential of the microelectrode is determined by the outside concentration of the ion. As the ion concentration varies, the potential of the microelectrode changes as a function of the log of the ion activity. When moved back and forth near a source or sink of the ion (i.e. in a concentration gradient due to ion flux) the microelectrode potential fluctuates at an amplitude proportional to the ion flux/gradient. The amplifier amplifies the microelectrode signal and the output is recorded on computer. The ion flux can then be calculated by Fick’s law of diffusion using the electrode potential fluctuation, the excursion of microelectrode, and other parameters such as the specific ion mobility. In this paper, we describe in detail the methodology to measure extracellular ion fluxes using the ion-selective self-referencing microelectrode and present some representative results.
Cellular Biology, Issue 99, ion-selective, self-referencing, microelectrode, extracellular ion fluxes, in vivo measurements
Play Button
Establishment of a Clinically Relevant Ex Vivo Mock Cataract Surgery Model for Investigating Epithelial Wound Repair in a Native Microenvironment
Authors: Janice L. Walker, Brigid M. Bleaken, Iris M. Wolff, A. Sue Menko.
Institutions: Thomas Jefferson University.
The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.
Developmental Biology, Issue 100, Wound healing, injury, repair, collective migration, collective movement, epithelial sheet movement, epithelial wound healing, lens
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
Play Button
Fabrication and Operation of an Oxygen Insert for Adherent Cellular Cultures
Authors: Shawn Oppegard, Elly Sinkala, David Eddington.
Institutions: University of Illinois.
Oxygen is a key modulator of many cellular pathways, but current devices permitting in vitro oxygen modulation fail to meet the needs of biomedical research. The hypoxic chamber offers a simple system to control oxygenation in standard culture vessels, but lacks precise temporal and spatial control over the oxygen concentration at the cell surface, preventing its application in studying a variety of physiological phenomena. Other systems have improved upon the hypoxic chamber, but require specialized knowledge and equipment for their operation, making them intimidating for the average researcher. A microfabricated insert for multiwell plates has been developed to more effectively control the temporal and spatial oxygen concentration to better model physiological phenomena found in vivo. The platform consists of a polydimethylsiloxane insert that nests into a standard multiwell plate and serves as a passive microfluidic gas network with a gas-permeable membrane aimed to modulate oxygen delivery to adherent cells. The device is simple to use and is connected to gas cylinders that provide the pressure to introduce the desired oxygen concentration into the platform. Fabrication involves a combination of standard SU-8 photolithography, replica molding, and defined PDMS spinning on a silicon wafer. The components of the device are bonded after surface treatment using a hand-held plasma system. Validation is accomplished with a planar fluorescent oxygen sensor. Equilibration time is on the order of minutes and a wide variety of oxygen profiles can be attained based on the device design, such as the cyclic profile achieved in this study, and even oxygen gradients to mimic those found in vivo. The device can be sterilized for cell culture using common methods without loss of function. The device's applicability to studying the in vitro wound healing response will be demonstrated.
Cellular Biology, Issue 35, hypoxia, cell, culture, control, wound, healing, oxygen, microfluidic device, bioengineering
Play Button
An Orthotopic Model of Murine Bladder Cancer
Authors: Georgina L. Dobek, W. T. Godbey.
Institutions: Tulane University, Tulane University.
In this straightforward procedure, bladder tumors are established in female C57 mice through the use of catheterization, local cauterization, and subsequent cell adhesion. After their bladders are transurethrally catheterized and drained, animals are again catheterized to permit insertion of a platinum wire into bladders without damaging the urethra or bladder. The catheters are made of Teflon to serve as an insulator for the wire, which will conduct electrical current into the bladder to create a burn injury. An electrocautery unit is used to deliver 2.5W to the exposed end of the wire, burning away extracellular layers and providing attachment sites for carcinoma cells that are delivered in suspension to the bladder through a subsequent catheterization. Cells remain in the bladder for 90 minutes, after which the catheters are removed and the bladders allowed to drain naturally. The development of tumor is monitored via ultrasound. Specific attention is paid to the catheterization technique in the accompanying video.
Medicine, Issue 48, Bladder tumor, orthotopic, mouse, ultrasound
Play Button
A Simplified Technique for Producing an Ischemic Wound Model
Authors: Sufan Chien, Bradon J. Wilhelmi.
Institutions: University of Louisville.
One major obstacle in current diabetic wound research is a lack of an ischemic wound model that can be safely used in diabetic animals. Drugs that work well in non-ischemic wounds may not work in human diabetic wounds because vasculopathy is one major factor that hinders healing of these wounds. We published an article in 2007 describing a rabbit ear ischemic wound model created by a minimally invasive surgical technique. Since then, we have further simplified the procedure for easier operation. On one ear, three small skin incisions were made on the vascular pedicles, 1-2 cm from the ear base. The central artery was ligated and cut along with the nerve. The whole cranial bundle was cut and ligated, leaving only the caudal branch intact. A circumferential subcutaneous tunnel was made through the incisions, to cut subcutaneous tissues, muscles, nerves, and small vessels. The other ear was used as a non-ischemic control. Four wounds were made on the ventral side of each ear. This technique produces 4 ischemic wounds and 4 non-ischemic wounds in one animal for paired comparisons. After surgery, the ischemic ear was cool and cyanotic, and showed reduced movement and a lack of pulse in the ear artery. Skin temperature of the ischemic ear was 1-10 °C lower than that on the normal ear and this difference was maintained for more than one month. Ear tissue high-energy phosphate contents were lower in the ischemic ear than the control ear. Wound healing times were longer in the ischemic ear than in the non-ischemic ear when the same treatment was used. The technique has now been used on more than 80 rabbits in which 23 were diabetic (diabetes time ranging from 2 weeks to 2 years). No single rabbit has developed any surgical complications such as bleeding, infection, or rupture in the skin incisions. The model has many advantages, such as little skin disruption, longer ischemic time, and higher success rate, when compared to many other models. It can be safely used in animals with reduced resistance, and can also be modified to meet different testing requirements.
Medicine, Issue 63, Wound, ischemia, rabbit, minimally invasive, model, diabetes, physiology
Play Button
Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
Authors: Brendan Carvalho, David J Clark, David Yeomans, Martin S Angst.
Institutions: Stanford University School of Medicine .
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).1 We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content (Anesth Analg 2010; 111:1452-9).2
Medicine, Issue 68, Biochemistry, Anatomy, Physiology, Cytokines, Cesarean Section, Wound Healing, Wounds and Injuries, Surgical Procedures, Operative, Surgical wound, Exudate, cytokines, Substance P, Interleukin 10, Interleukin 6, Nerve growth factor, Prostaglandin E2, Cesarean, Analgesia
Play Button
Murine Model of Wound Healing
Authors: Louise Dunn, Hamish C. G Prosser, Joanne T. M. Tan, Laura Z. Vanags, Martin K. C. Ng, Christina A. Bursill.
Institutions: The Heart Research Institute, University of Sydney , Royal Prince Alfred Hospital .
Wound healing and repair are the most complex biological processes that occur in human life. After injury, multiple biological pathways become activated. Impaired wound healing, which occurs in diabetic patients for example, can lead to severe unfavorable outcomes such as amputation. There is, therefore, an increasing impetus to develop novel agents that promote wound repair. The testing of these has been limited to large animal models such as swine, which are often impractical. Mice represent the ideal preclinical model, as they are economical and amenable to genetic manipulation, which allows for mechanistic investigation. However, wound healing in a mouse is fundamentally different to that of humans as it primarily occurs via contraction. Our murine model overcomes this by incorporating a splint around the wound. By splinting the wound, the repair process is then dependent on epithelialization, cellular proliferation and angiogenesis, which closely mirror the biological processes of human wound healing. Whilst requiring consistency and care, this murine model does not involve complicated surgical techniques and allows for the robust testing of promising agents that may, for example, promote angiogenesis or inhibit inflammation. Furthermore, each mouse acts as its own control as two wounds are prepared, enabling the application of both the test compound and the vehicle control on the same animal. In conclusion, we demonstrate a practical, easy-to-learn, and robust model of wound healing, which is comparable to that of humans.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Surgery, Tissue, Lacerations, Soft Tissue Injuries, Wound Infection, Wounds, Nonpenetrating, Penetrating, Growth Substances, Angiogenesis Modulating Agents, Wounds and Injuries, Wound healing, mouse, angiogenesis, diabetes mellitus, splint, surgical techniques, animal model
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
Play Button
An Alkali-burn Injury Model of Corneal Neovascularization in the Mouse
Authors: Chastain Anderson, Qinbo Zhou, Shusheng Wang.
Institutions: Tulane University, Tulane University.
Under normal conditions, the cornea is avascular, and this transparency is essential for maintaining good visual acuity. Neovascularization (NV) of the cornea, which can be caused by trauma, keratoplasty or infectious disease, breaks down the so called ‘angiogenic privilege' of the cornea and forms the basis of multiple visual pathologies that may even lead to blindness. Although there are several treatment options available, the fundamental medical need presented by corneal neovascular pathologies remains unmet. In order to develop safe, effective, and targeted therapies, a reliable model of corneal NV and pharmacological intervention is required. Here, we describe an alkali-burn injury corneal neovascularization model in the mouse. This protocol provides a method for the application of a controlled alkali-burn injury to the cornea, administration of a pharmacological compound of interest, and visualization of the result. This method could prove instrumental for studying the mechanisms and opportunities for intervention in corneal NV and other neovascular disorders.
Medicine, Issue 86, Alkali-burn Injury, Corneal Neovascularization (NV), Corneal Blindness, Angiogenesis, Inflammation, Hemangiogenesis, Lymphangiogenesis
Play Button
DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat
Authors: Vijay Morampudi, Ganive Bhinder, Xiujuan Wu, Chuanbin Dai, Ho Pan Sham, Bruce A. Vallance, Kevan Jacobson.
Institutions: BC Children's Hospital.
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Medicine, Issue 84, Chemical colitis, Inflammatory Bowel Disease, intra rectal administration, intestinal inflammation, transmural inflammation, myeloperoxidase activity
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.