JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Growth and development in Chinese pre-schoolers with picky eating behaviour: a cross-sectional study.
.
PLoS ONE
PUBLISHED: 04-16-2015
To explore the associations between picky eating behaviour and pre-schoolers' growth and development. Corresponding potential mechanisms, such as nutrient and food subgroup intake, as well as micronutrients in the blood, will be considered.
Authors: R. Brian Roome, Jacqueline L. Vanderluit.
Published: 04-29-2015
ABSTRACT
The cylinder test is routinely used to predict focal ischemic damage to the forelimb motor cortex in rodents. When placed in the cylinder, rodents explore by rearing and touching the walls of the cylinder with their forelimb paws for postural support. Following ischemic injury to the forelimb sensorimotor cortex, rats rely more heavily on their unaffected forelimb paw for postural support resulting in fewer touches with their affected paw which is termed forelimb asymmetry. In contrast, focal ischemic damage in the mouse brain fails to result in comparable consistent deficits in forelimb asymmetry. While forelimb asymmetry deficits are infrequently observed, mice do demonstrate a novel behaviour post stroke termed “paw-dragging”. Paw-dragging is the tendency for a mouse to drag its affected paw along the cylinder wall rather than directly push off from the wall when dismounting from a rear to a four-legged stance. We have previously demonstrated that paw-dragging behaviour is highly sensitive to small cortical ischemic injuries to the forelimb motor cortex. Here we provide a detailed protocol for paw-dragging analysis. We define what a paw-drag is and demonstrate how to quantify paw-dragging behaviour. The cylinder test is a simple and inexpensive test to administer and does not require pre-training or food deprivation strategies. In using paw-dragging analysis with the cylinder test, it fills a niche for predicting cortical ischemic injuries such as photothrombosis and Endothelin-1 (ET-1)-induced ischemia – two models that are ever-increasing in popularity and produce smaller focal injuries than middle cerebral artery occlusion. Finally, measuring paw-dragging behaviour in the cylinder test will allow studies of functional recovery after cortical injury using a wide cohort of transgenic mouse strains where previous forelimb asymmetry analysis has failed to detect consistent deficits.
22 Related JoVE Articles!
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
51281
Play Button
Assessing Forelimb Function after Unilateral Cervical SCI using Novel Tasks: Limb Step-alternation, Postural Instability and Pasta Handling
Authors: Zin Z. Khaing, Sydney A. Geissler, Timothy Schallert, Christine E. Schmidt.
Institutions: The University of Texas at Austin, The University of Texas at Austin, University of Florida.
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI.
Behavior, Issue 79, Behavior, Animal, Motor Activity, Nervous System Diseases, Wounds and Injuries, cervical spinal cord injury, lateral hemisection model, limb alternation, pasta handling, postural instability
50955
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
50956
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
51236
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
51575
Play Button
Tissue Triage and Freezing for Models of Skeletal Muscle Disease
Authors: Hui Meng, Paul M.L. Janssen, Robert W. Grange, Lin Yang, Alan H. Beggs, Lindsay C. Swanson, Stacy A. Cossette, Alison Frase, Martin K. Childers, Henk Granzier, Emanuela Gussoni, Michael W. Lawlor.
Institutions: Medical College of Wisconsin, The Ohio State University, Virginia Tech, University of Kentucky, Boston Children's Hospital, Harvard Medical School, Cure Congenital Muscular Dystrophy, Joshua Frase Foundation, University of Washington, University of Arizona.
Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease.
Basic Protocol, Issue 89, Tissue, Freezing, Muscle, Isopentane, Pathology, Functional Testing, Cell Culture
51586
Play Button
Mindfulness in Motion (MIM): An Onsite Mindfulness Based Intervention (MBI) for Chronically High Stress Work Environments to Increase Resiliency and Work Engagement
Authors: Maryanna Klatt, Beth Steinberg, Anne-Marie Duchemin.
Institutions: The Ohio State University College of Medicine, Wexner Medical Center, The Ohio State University College of Medicine.
A pragmatic mindfulness intervention to benefit personnel working in chronically high-stress environments, delivered onsite during the workday, is timely and valuable to employee and employer alike. Mindfulness in Motion (MIM) is a Mindfulness Based Intervention (MBI) offered as a modified, less time intensive method (compared to Mindfulness-Based Stress Reduction), delivered onsite, during work, and intends to enable busy working adults to experience the benefits of mindfulness. It teaches mindful awareness principles, rehearses mindfulness as a group, emphasizes the use of gentle yoga stretches, and utilizes relaxing music in the background of both the group sessions and individual mindfulness practice. MIM is delivered in a group format, for 1 hr/week/8 weeks. CDs and a DVD are provided to facilitate individual practice. The yoga movement is emphasized in the protocol to facilitate a quieting of the mind. The music is included for participants to associate the relaxed state experienced in the group session with their individual practice. To determine the intervention feasibility/efficacy we conducted a randomized wait-list control group in Intensive Care Units (ICUs). ICUs represent a high-stress work environment where personnel experience chronic exposure to catastrophic situations as they care for seriously injured/ill patients. Despite high levels of work-related stress, few interventions have been developed and delivered onsite for such environments. The intervention is delivered on site in the ICU, during work hours, with participants receiving time release to attend sessions. The intervention is well received with 97% retention rate. Work engagement and resiliency increase significantly in the intervention group, compared to the wait-list control group, while participant respiration rates decrease significantly pre-post in 6/8 of the weekly sessions. Participants value institutional support, relaxing music, and the instructor as pivotal to program success. This provides evidence that MIM is feasible, well accepted, and can be effectively implemented in a chronically high-stress work environment.
Behavior, Issue 101, Mindfulness, resiliency, work-engagement, stress-reduction, workplace, non-reactivity, Intensive-care, chronic stress, work environment
52359
Play Button
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers
Authors: Stuart M. Roche, Jonathan P. Gumucio, Susan V. Brooks, Christopher L. Mendias, Dennis R. Claflin.
Institutions: University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School.
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
Bioengineering, Issue 100, Muscle physiology, skeletal muscle, single muscle fiber, permeabilized, cross-sectional area, isometric force, specific force
52695
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Procedure for the Development of Multi-depth Circular Cross-sectional Endothelialized Microchannels-on-a-chip
Authors: Xiang Li, Samantha Marie Mearns, Manuela Martins-Green, Yuxin Liu.
Institutions: West Virginia University, University of California at Riverside.
Efforts have been focused on developing in vitro assays for the study of microvessels because in vivo animal studies are more time-consuming, expensive, and observation and quantification are very challenging. However, conventional in vitro microvessel assays have limitations when representing in vivo microvessels with respect to three-dimensional (3D) geometry and providing continuous fluid flow. Using a combination of photolithographic reflowable photoresist technique, soft lithography, and microfluidics, we have developed a multi-depth circular cross-sectional endothelialized microchannels-on-a-chip, which mimics the 3D geometry of in vivo microvessels and runs under controlled continuous perfusion flow. A positive reflowable photoresist was used to fabricate a master mold with a semicircular cross-sectional microchannel network. By the alignment and bonding of the two polydimethylsiloxane (PDMS) microchannels replicated from the master mold, a cylindrical microchannel network was created. The diameters of the microchannels can be well controlled. In addition, primary human umbilical vein endothelial cells (HUVECs) seeded inside the chip showed that the cells lined the inner surface of the microchannels under controlled perfusion lasting for a time period between 4 days to 2 weeks.
Bioengineering, Issue 80, Bioengineering, Tissue Engineering, Miniaturization, Microtechnology, Microfluidics, Reflow photoresist, PDMS, Perfusion flow, Primary endothelial cells
50771
Play Button
Generation and 3-Dimensional Quantitation of Arterial Lesions in Mice Using Optical Projection Tomography
Authors: Nicholas S. Kirkby, Lucinda Low, Junxi Wu, Eileen Miller, Jonathan R. Seckl, Brian R. Walker, David J. Webb, Patrick W. F. Hadoke.
Institutions: The Queen's Medical Research Institute.
The generation and analysis of vascular lesions in appropriate animal models is a cornerstone of research into cardiovascular disease, generating important information on the pathogenesis of lesion formation and the action of novel therapies. Use of atherosclerosis-prone mice, surgical methods of lesion induction, and dietary modification has dramatically improved understanding of the mechanisms that contribute to disease development and the potential of new treatments. Classically, analysis of lesions is performed ex vivo using 2-dimensional histological techniques. This article describes application of optical projection tomography (OPT) to 3-dimensional quantitation of arterial lesions. As this technique is non-destructive, it can be used as an adjunct to standard histological and immunohistochemical analyses. Neointimal lesions were induced by wire-insertion or ligation of the mouse femoral artery whilst atherosclerotic lesions were generated by administration of an atherogenic diet to apoE-deficient mice. Lesions were examined using OPT imaging of autofluorescent emission followed by complementary histological and immunohistochemical analysis. OPT clearly distinguished lesions from the underlying vascular wall. Lesion size was calculated in 2-dimensional sections using planimetry, enabling calculation of lesion volume and maximal cross-sectional area. Data generated using OPT were consistent with measurements obtained using histology, confirming the accuracy of the technique and its potential as a complement (rather than alternative) to traditional methods of analysis. This work demonstrates the potential of OPT for imaging atherosclerotic and neointimal lesions. It provides a rapid, much needed ex vivo technique for the routine 3-dimensional quantification of vascular remodelling.
Medicine, Issue 99, neointima, mouse femoral artery, atherosclerosis, brachiocephalic trunk, optical projection tomography
50627
Play Button
The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Institutions: University of Lethbridge.
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
Neuroscience, Issue 18, rat skilled reaching, rat reaching scale, rat, rat movement element rating scale, reaching elements
816
Play Button
The Vermicelli and Capellini Handling Tests: Simple quantitative measures of dexterous forepaw function in rats and mice
Authors: Kelly A. Tennant, Aaron L. Asay, Rachel P. Allred, Angela R. Ozburn, Jeffrey A. Kleim, Theresa A. Jones.
Institutions: University of Texas at Austin, University of Texas at Austin, University of Florida, University of Texas Southwestern Medical Center, University of Florida.
Previous characterizations of rodent eating behavior have revealed that they use coordinated forepaw movements to manipulate food pieces. We have extended upon this work to develop a simple quantitative measure of forepaw dexterity that is sensitive to lateralized impairments and age-dependent changes. Rodents learn skillful forepaw and digit movements to manage thin pasta pieces, which they eagerly consume. We have previously described methods for quantifying vermicelli handling in rats and showed that the measures are very sensitive to forelimb impairments resulting from unilateral ischemic lesions, middle cerebral artery occlusions and unilateral striatal dopamine depletion [Allred, R.P., Adkins, D.L., Woodlee, M.T., Husbands, L.C., Maldonado M.A., Kane, J.R., Schallert, T. & Jones, T.A. The Vermicelli Handling Test: a simple quantitative measure of dexterous forepaw function in rats. J. Neurosci. Methods 170, 229-244 (2008)]. Here we present a more detailed protocol for this test in rats and compare it with a newly developed version for mice, the Capellini Handling Test. Rats and mice are videotaped while handling short lengths of uncooked vermicelli or capellini pasta, respectively, with a camera positioned to optimize the view of paw movements. Slow motion video playback allows for the identification of forepaw adjustments, defined as any distinct removal and replacement of the paw, or of any number of digits, on the pasta piece after eating commences. Forepaw adjustments per piece are averaged over trials per each testing session. Repeated testing permits sensitive quantitative analysis of changes in forepaw dexterity over time. Protocols for pre-testing habituation and handling practice, as well as procedures for characterizing atypical handling patterns, are described. Because rats and mice perform the pasta handling tests slightly differently, species-specific differences in administration and scoring of these tests are highlighted. All animal use was in accordance with protocols approved by the University of Texas at Austin Animal Care and Use Committee.
JoVE Neuroscience, Issue 41, manual dexterity, food handling, pasta, rodent models, upper extremity impairment
2076
Play Button
A Novel Method for Assessing Proximal and Distal Forelimb Function in the Rat: the Irvine, Beatties and Bresnahan (IBB) Forelimb Scale
Authors: Karen-Amanda Irvine, Adam R. Ferguson, Kathleen D. Mitchell, Stephanie B. Beattie, Michael S. Beattie, Jacqueline C. Bresnahan.
Institutions: University of California, San Francisco.
Several experimental models of cervical spinal cord injury (SCI) have been developed recently to assess the consequences of damage to this level of the spinal cord (Pearse et al., 2005, Gensel et al., 2006, Anderson et al., 2009), as the majority of human SCI occur here (Young, 2010; www.sci-info-pages.com). Behavioral deficits include loss of forelimb function due to damage to the white matter affecting both descending motor and ascending sensory systems, and to the gray matter containing the segmental circuitry for processing sensory input and motor output for the forelimb. Additionally, a key priority for human patients with cervical SCI is restoration of hand/arm function (Anderson, 2004). Thus, outcome measures that assess both proximal and distal forelimb function are needed. Although there are several behavioral assays that are sensitive to different aspects of forelimb recovery in experimental models of cervical SCI (Girgis et al., 2007, Gensel et al., 2006, Ballerman et al., 2001, Metz and Whishaw, 2000, Bertelli and Mira, 1993, Montoya et al., 1991, Whishaw and Pellis, 1990), few techniques provide detailed information on the recovery of fine motor control and digit movement. The current measurement technique, the Irvine, Beatties and Bresnahan forelimb scale (IBB), can detect recovery of both proximal and distal forelimb function including digit movements during a naturally occurring behavior that does not require extensive training or deprivation to enhance motivation. The IBB was generated by observing recovery after a unilateral C6 SCI, and involves video recording of animals eating two differently shaped cereals (spherical and doughnut) of a consistent size. These videos were then used to assess features of forelimb use, such as joint position, object support, digit movement and grasping technique. The IBB, like other forelimb behavioral tasks, shows a consistent pattern of recovery that is sensitive to injury severity. Furthermore, the IBB scale could be used to assess recovery following other types of injury that impact normal forelimb function.
Neuroscience, Issue 46, spinal cord injury, recovery of function, forelimb function, neurological test, cervical injuries
2246
Play Button
Generation of Composite Plants in Medicago truncatula used for Nodulation Assays
Authors: Ying Deng, Guohong Mao, William Stutz, Oliver Yu.
Institutions: St. Louis, Missouri.
Similar to Agrobacterium tumerfaciens, Agrobacterium rhizogenes can transfer foreign DNAs into plant cells based on the autonomous root-inducing (Ri) plasmid. A. rhizogenes can cause hairy root formation on plant tissues and form composite plants after transformation. On these composite plants, some of the regenerated roots are transgenic, carrying the wild type T-DNA and the engineered binary vector; while the shoots are still non-transgenic, serving to provide energy and growth support. These hairy root composite plants will not produce transgenic seeds, but there are a number of important features that make these composite plants very useful in plant research. First, with a broad host range,A. rhizogenes can transform many plant species, especially dicots, allowing genetic engineering in a variety of species. Second, A. rhizogenes infect tissues and explants directly; no tissue cultures prior to transformation is necessary to obtain composite plants, making them ideal for transforming recalcitrant plant species. Moreover, transgenic root tissues can be generated in a matter of weeks. For Medicago truncatula, we can obtain transgenic roots in as short as three weeks, faster than normal floral dip Arabidopsis transformation. Overall, the hairy root composite plant technology is a versatile and useful tool to study gene functions and root related-phenotypes. Here we demonstrate how hairy root composite plants can be used to study plant-rhizobium interactions and nodulation in the difficult-to-transform species M. truncatula.
Plant Biology, Issue 49, hairy root, composite plants, Medicago truncatula, rhizobia, GFP
2633
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
Progressive-ratio Responding for Palatable High-fat and High-sugar Food in Mice
Authors: Sandeep Sharma, Cecile Hryhorczuk, Stephanie Fulton.
Institutions: University of Montreal.
Foods that are rich in fat and sugar significantly contribute to over-eating and escalating rates of obesity. The consumption of palatable foods can produce a rewarding effect that strengthens action-outcome associations and reinforces future behavior directed at obtaining these foods. Increasing evidence that the rewarding effects of energy-dense foods play a profound role in overeating and the development of obesity has heightened interest in studying the genes, molecules and neural circuitry that modulate food reward1,2. The rewarding impact of different stimuli can be studied by measuring the willingness to work to obtain them, such as in operant conditioning tasks3. Operant models of food reward measure acquired and voluntary behavioral responses that are directed at obtaining food. A commonly used measure of reward strength is an operant procedure known as the progressive ratio (PR) schedule of reinforcement.4,5 In the PR task, the subject is required to make an increasing number of operant responses for each successive reward. The pioneering study of Hodos (1961) demonstrated that the number of responses made to obtain the last reward, termed the breakpoint, serves as an index of reward strength4. While operant procedures that measure changes in response rate alone cannot separate changes in reward strength from alterations in performance capacity, the breakpoint derived from the PR schedule is a well-validated measure of the rewarding effects of food. The PR task has been used extensively to assess the rewarding impact of drugs of abuse and food in rats (e.g.,6-8), but to a lesser extent in mice9. The increased use of genetically engineered mice and diet-induced obese mouse models has heightened demands for behavioral measures of food reward in mice. In the present article we detail the materials and procedures used to train mice to respond (lever-press) for a high-fat and high-sugar food pellets on a PR schedule of reinforcement. We show that breakpoint response thresholds increase following acute food deprivation and decrease with peripheral administration of the anorectic hormone leptin and thereby validate the use of this food-operant paradigm in mice.
Neuroscience, Issue 63, behavioral neuroscience, operant conditioning, food, reward, obesity, leptin, mouse
3754
Play Button
Roux-en-Y Gastric Bypass Operation in Rats
Authors: Marco Bueter, Kathrin Abegg, Florian Seyfried, Thomas A. Lutz, Carel W. le Roux.
Institutions: University Hospital Zürich, University of Zürich, University of Zürich, Imperial College London .
Currently, the most effective therapy for the treatment of morbid obesity to induce significant and maintained body weight loss with a proven mortality benefit is bariatric surgery1,2. Consequently, there has been a steady rise in the number of bariatric operations done worldwide in recent years with the Roux-en-Y gastric bypass (gastric bypass) being the most commonly performed operation3. Against this background, it is important to understand the physiological mechanisms by which gastric bypass induces and maintains body weight loss. These mechanisms are yet not fully understood, but may include reduced hunger and increased satiation4,5, increased energy expenditure6,7, altered preference for food high in fat and sugar8,9, altered salt and water handling of the kidney10 as well as alterations in gut microbiota11. Such changes seen after gastric bypass may at least partly stem from how the surgery alters the hormonal milieu because gastric bypass increases the postprandial release of peptide-YY (PYY) and glucagon-like-peptide-1 (GLP-1), hormones that are released by the gut in the presence of nutrients and that reduce eating12. During the last two decades numerous studies using rats have been carried out to further investigate physiological changes after gastric bypass. The gastric bypass rat model has proven to be a valuable experimental tool not least as it closely mimics the time profile and magnitude of human weight loss, but also allows researchers to control and manipulate critical anatomic and physiologic factors including the use of appropriate controls. Consequently, there is a wide array of rat gastric bypass models available in the literature reviewed elsewhere in more detail 13-15. The description of the exact surgical technique of these models varies widely and differs e.g. in terms of pouch size, limb lengths, and the preservation of the vagal nerve. If reported, mortality rates seem to range from 0 to 35%15. Furthermore, surgery has been carried out almost exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate the comparison and identification of potential physiological mechanisms involved in gastric bypass. There is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data. This article therefore aims to summarize and discuss technical and experimental details of our previously validated and published gastric bypass rat model.
Medicine, Issue 64, Physiology, Roux-en-Y Gastric bypass, rat model, gastric pouch size, gut hormones
3940
Play Button
Fabricating Metamaterials Using the Fiber Drawing Method
Authors: Alessandro Tuniz, Richard Lwin, Alexander Argyros, Simon C. Fleming, Boris T. Kuhlmey.
Institutions: University of Sydney .
Metamaterials are man-made composite materials, fabricated by assembling components much smaller than the wavelength at which they operate 1. They owe their electromagnetic properties to the structure of their constituents, instead of the atoms that compose them. For example, sub-wavelength metal wires can be arranged to possess an effective electric permittivity that is either positive or negative at a given frequency, in contrast to the metals themselves 2. This unprecedented control over the behaviour of light can potentially lead to a number of novel devices, such as invisibility cloaks 3, negative refractive index materials 4, and lenses that resolve objects below the diffraction limit 5. However, metamaterials operating at optical, mid-infrared and terahertz frequencies are conventionally made using nano- and micro-fabrication techniques that are expensive and produce samples that are at most a few centimetres in size 6-7. Here we present a fabrication method to produce hundreds of meters of metal wire metamaterials in fiber form, which exhibit a terahertz plasmonic response 8. We combine the stack-and-draw technique used to produce microstructured polymer optical fiber 9 with the Taylor-wire process 10, using indium wires inside polymethylmethacrylate (PMMA) tubes. PMMA is chosen because it is an easy to handle, drawable dielectric with suitable optical properties in the terahertz region; indium because it has a melting temperature of 156.6 °C which is appropriate for codrawing with PMMA. We include an indium wire of 1 mm diameter and 99.99% purity in a PMMA tube with 1 mm inner diameter (ID) and 12 mm outside diameter (OD) which is sealed at one end. The tube is evacuated and drawn down to an outer diameter of 1.2 mm. The resulting fiber is then cut into smaller pieces, and stacked into a larger PMMA tube. This stack is sealed at one end and fed into a furnace while being rapidly drawn, reducing the diameter of the structure by a factor of 10, and increasing the length by a factor of 100. Such fibers possess features on the micro- and nano- scale, are inherently flexible, mass-producible, and can be woven to exhibit electromagnetic properties that are not found in nature. They represent a promising platform for a number of novel devices from terahertz to optical frequencies, such as invisible fibers, woven negative refractive index cloths, and super-resolving lenses.
Physics, Issue 68, Optics, Photonics, Materials Science, Fiber drawing, metamaterials, polymer optical fiber, microstructured fibers
4299
Play Button
A Model of Chronic Nutrient Infusion in the Rat
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Institutions: CRCHUM, University of Montreal.
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
Biomedical Engineering, Issue 78, Medicine, Anatomy, Physiology, Basic Protocols, Surgery, Metabolic Diseases, Infusions, Intravenous, Infusion Pumps, Glucolipotoxicity, Rat, Infusion, Glucose, Intralipid, Catheter, canulation, canula, diabetes, animal model
50267
Play Button
Chemotactic Response of Marine Micro-Organisms to Micro-Scale Nutrient Layers
Authors: Justin R. Seymour, Marcos, Roman Stocker.
Institutions: MIT - Massachusetts Institute of Technology.
The degree to which planktonic microbes can exploit microscale resource patches will have considerable implications for oceanic trophodynamics and biogeochemical flux. However, to take advantage of nutrient patches in the ocean, swimming microbes must overcome the influences of physical forces including molecular diffusion and turbulent shear, which will limit the availability of patches and the ability of bacteria to locate them. Until recently, methodological limitations have precluded direct examinations of microbial behaviour within patchy habitats and realistic small-scale flow conditions. Hence, much of our current knowledge regarding microbial behaviour in the ocean has been procured from theoretical predictions. To obtain new information on microbial foraging behaviour in the ocean we have applied soft lithographic fabrication techniques to develop 2 microfluidic devices, which we have used to create (i) microscale nutrient patches with dimensions and diffusive characteristics relevant to oceanic processes and (ii) microscale vortices, with shear rates corresponding to those expected in the ocean. These microfluidic devices have permitted a first direct examination of microbial swimming and chemotactic behaviour within a heterogeneous and dynamic seascape. The combined use of epifluorescence and phase contrast microscopy allow direct examinations of the physical dimensions and diffusive characteristics of nutrient patches, while observing the population-level aggregative response, in addition to the swimming behaviour of individual microbes. These experiments have revealed that some species of phytoplankton, heterotrophic bacteria and phagotrophic protists are adept at locating and exploiting diffusing microscale resource patches within very short time frames. We have also shown that up to moderate shear rates, marine bacteria are able to fight the flow and swim through their environment at their own accord. However, beyond a threshold high shear level, bacteria are aligned in the shear flow and are less capable of swimming without disturbance from the flow. Microfluidics represents a novel and inexpensive approach for studying aquatic microbial ecology, and due to its suitability for accurately creating realistic flow fields and substrate gradients at the microscale, is ideally applicable to examinations of microbial behaviour at the smallest scales of interaction. We therefore suggest that microfluidics represents a valuable tool for obtaining a better understanding of the ecology of microorganisms in the ocean.
Microbiology, issue 4, microbial community, chemotaxis, microfluidics
203
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.