JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Phase 1 study of pandemic H1 DNA vaccine in healthy adults.
PUBLISHED: 04-18-2015
A novel, swine-origin influenza A (H1N1) virus was detected worldwide in April 2009, and the World Health Organization (WHO) declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1) influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1) licensed monovalent inactivated vaccine (MIV).
The baculovirus expression system is a powerful tool for expression of recombinant proteins. Here we use it to produce correctly folded and glycosylated versions of the influenza A virus surface glycoproteins - the hemagglutinin (HA) and the neuraminidase (NA). As an example, we chose the HA and NA proteins expressed by the novel H7N9 virus that recently emerged in China. However the protocol can be easily adapted for HA and NA proteins expressed by any other influenza A and B virus strains. Recombinant HA (rHA) and NA (rNA) proteins are important reagents for immunological assays such as ELISPOT and ELISA, and are also in wide use for vaccine standardization, antibody discovery, isolation and characterization. Furthermore, recombinant NA molecules can be used to screen for small molecule inhibitors and are useful for characterization of the enzymatic function of the NA, as well as its sensitivity to antivirals. Recombinant HA proteins are also being tested as experimental vaccines in animal models, and a vaccine based on recombinant HA was recently licensed by the FDA for use in humans. The method we describe here to produce these molecules is straight forward and can facilitate research in influenza laboratories, since it allows for production of large amounts of proteins fast and at a low cost. Although here we focus on influenza virus surface glycoproteins, this method can also be used to produce other viral and cellular surface proteins.
19 Related JoVE Articles!
Play Button
Quantitative Analyses of all Influenza Type A Viral Hemagglutinins and Neuraminidases using Universal Antibodies in Simple Slot Blot Assays
Authors: Caroline Gravel, Changgui Li, Junzhi Wang, Anwar M Hashem, Bozena Jaentschke, Gary Van Domselaar, Runtao He, Xuguang Li.
Institutions: Health canada, The State Food and Drug Administration, Beijing, University of Ottawa, King Abdulaziz University, Public Health Agency of Canada.
Hemagglutinin (HA) and neuraminidase (NA) are two surface proteins of influenza viruses which are known to play important roles in the viral life cycle and the induction of protective immune responses1,2. As the main target for neutralizing antibodies, HA is currently used as the influenza vaccine potency marker and is measured by single radial immunodiffusion (SRID)3. However, the dependence of SRID on the availability of the corresponding subtype-specific antisera causes a minimum of 2-3 months delay for the release of every new vaccine. Moreover, despite evidence that NA also induces protective immunity4, the amount of NA in influenza vaccines is not yet standardized due to a lack of appropriate reagents or analytical method5. Thus, simple alternative methods capable of quantifying HA and NA antigens are desirable for rapid release and better quality control of influenza vaccines. Universally conserved regions in all available influenza A HA and NA sequences were identified by bioinformatics analyses6-7. One sequence (designated as Uni-1) was identified in the only universally conserved epitope of HA, the fusion peptide6, while two conserved sequences were identified in neuraminidases, one close to the enzymatic active site (designated as HCA-2) and the other close to the N-terminus (designated as HCA-3)7. Peptides with these amino acid sequences were synthesized and used to immunize rabbits for the production of antibodies. The antibody against the Uni-1 epitope of HA was able to bind to 13 subtypes of influenza A HA (H1-H13) while the antibodies against the HCA-2 and HCA-3 regions of NA were capable of binding all 9 NA subtypes. All antibodies showed remarkable specificity against the viral sequences as evidenced by the observation that no cross-reactivity to allantoic proteins was detected. These universal antibodies were then used to develop slot blot assays to quantify HA and NA in influenza A vaccines without the need for specific antisera7,8. Vaccine samples were applied onto a PVDF membrane using a slot blot apparatus along with reference standards diluted to various concentrations. For the detection of HA, samples and standard were first diluted in Tris-buffered saline (TBS) containing 4M urea while for the measurement of NA they were diluted in TBS containing 0.01% Zwittergent as these conditions significantly improved the detection sensitivity. Following the detection of the HA and NA antigens by immunoblotting with their respective universal antibodies, signal intensities were quantified by densitometry. Amounts of HA and NA in the vaccines were then calculated using a standard curve established with the signal intensities of the various concentrations of the references used. Given that these antibodies bind to universal epitopes in HA or NA, interested investigators could use them as research tools in immunoassays other than the slot blot only.
Immunology, Issue 50, Virology, influenza, hemagglutinin, neuraminidase, quantification, universal antibody
Play Button
Generation of Recombinant Influenza Virus from Plasmid DNA
Authors: Luis Martínez-Sobrido, Adolfo García-Sastre.
Institutions: University of Rochester School of Medicine and Dentistry, Mount Sinai School of Medicine .
Efforts by a number of influenza research groups have been pivotal in the development and improvement of influenza A virus reverse genetics. Originally established in 1999 1,2 plasmid-based reverse genetic techniques to generate recombinant viruses have revolutionized the influenza research field because specific questions have been answered by genetically engineered, infectious, recombinant influenza viruses. Such studies include virus replication, function of viral proteins, the contribution of specific mutations in viral proteins in viral replication and/or pathogenesis and, also, viral vectors using recombinant influenza viruses expressing foreign proteins 3.
Microbiology, Issue 42, influenza viruses, plasmid transfection, recombinant virus, reverse genetics techniques, HA assay
Play Button
Investigating the Effects of Probiotics on Pneumococcal Colonization Using an In Vitro Adherence Assay
Authors: Eileen M. Dunne, Zheng Q. Toh, Mary John, Jayne Manning, Catherine Satzke, Paul Licciardi.
Institutions: Murdoch Childrens Research Institute, Murdoch Childrens Research Institute, The University of Melbourne, The University of Melbourne.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.
Immunology, Issue 86, Gram-Positive Bacterial Infections, Pneumonia, Bacterial, Lung Diseases, Respiratory Tract Infections, Streptococcus pneumoniae, adherence, colonization, probiotics, Streptococcus salivarius, In Vitro assays
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR
Authors: Alessandra Sottini, Federico Serana, Diego Bertoli, Marco Chiarini, Monica Valotti, Marion Vaglio Tessitore, Luisa Imberti.
Institutions: Spedali Civili di Brescia.
T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/106 cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.
Immunology, Issue 94, B lymphocytes, primary immunodeficiency, real-time PCR, immune recovery, T-cell homeostasis, T lymphocytes, thymic output, bone marrow output
Play Button
Influenza Virus Propagation in Embryonated Chicken Eggs
Authors: Rena Brauer, Peter Chen.
Institutions: Cedars-Sinai Medical Center.
Influenza infection is associated with about 36,000 deaths and more than 200,000 hospitalizations every year in the United States. The continuous emergence of new influenza virus strains due to mutation and re-assortment complicates the control of the virus and necessitates the permanent development of novel drugs and vaccines. The laboratory-based study of influenza requires a reliable and cost-effective method for the propagation of the virus. Here, a comprehensive protocol is provided for influenza A virus propagation in fertile chicken eggs, which consistently yields high titer viral stocks. In brief, serum pathogen-free (SPF) fertilized chicken eggs are incubated at 37 °C and 55-60% humidity for 10 – 11 days. Over this period, embryo development can be easily monitored using an egg candler. Virus inoculation is carried out by injection of virus stock into the allantoic cavity using a needle. After 2 days of incubation at 37 °C, the eggs are chilled for at least 4 hr at 4 °C. The eggshell above the air sac and the chorioallantoic membrane are then carefully opened, and the allantoic fluid containing the virus is harvested. The fluid is cleared from debris by centrifugation, aliquoted and transferred to -80 °C for long-term storage. The large amount (5-10 ml of virus-containing fluid per egg) and high virus titer which is usually achieved with this protocol has made the usage of eggs for virus preparation our favorable method, in particular for in vitro studies which require large quantities of virus in which high dosages of the same virus stock are needed.
Infection, Issue 97, Influenza, A/PR/8/34, chicken eggs, allantoic fluid, virus growth, influenza virus propagation
Play Button
Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity
Authors: José Vicente Pérez-Girón, Sergio Gómez-Medina, Anja Lüdtke, Cesar Munoz-Fontela.
Institutions: Heinrich Pette Institute, Leibniz Institute for Experimental Virology.
Vaccines are one of the greatest achievements of mankind, and have saved millions of lives over the last century. Paradoxically, little is known about the physiological mechanisms that mediate immune responses to vaccines perhaps due to the overall success of vaccination, which has reduced interest into the molecular and physiological mechanisms of vaccine immunity. However, several important human pathogens including influenza virus still pose a challenge for vaccination, and may benefit from immune-based strategies. Although influenza reverse genetics has been successfully applied to the generation of live-attenuated influenza vaccines (LAIVs), the addition of molecular tools in vaccine preparations such as tracer components to follow up the kinetics of vaccination in vivo, has not been addressed. In addition, the recent generation of mouse models that allow specific depletion of leukocytes during kinetic studies has opened a window of opportunity to understand the basic immune mechanisms underlying vaccine-elicited protection. Here, we describe how the combination of reverse genetics and chimeric mouse models may help to provide new insights into how vaccines work at physiological and molecular levels, using as example a recombinant, cold-adapted, live-attenuated influenza vaccine (LAIV). We utilized laboratory-generated LAIVs harboring cell tracers as well as competitive bone marrow chimeras (BMCs) to determine the early kinetics of vaccine immunity and the main physiological mechanisms responsible for the initiation of vaccine-specific adaptive immunity. In addition, we show how this technique may facilitate gene function studies in single animals during immune responses to vaccines. We propose that this technique can be applied to improve current prophylactic strategies against pathogens for which urgent medical countermeasures are needed, for example influenza, HIV, Plasmodium, and hemorrhagic fever viruses such as Ebola virus.
Immunology, Issue 100, Mouse models, vaccines, immunity, dendritic cells, influenza, T cells
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
Play Button
Rescue of Recombinant Newcastle Disease Virus from cDNA
Authors: Juan Ayllon, Adolfo García-Sastre, Luis Martínez-Sobrido.
Institutions: Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, University of Rochester.
Newcastle disease virus (NDV), the prototype member of the Avulavirus genus of the family Paramyxoviridae1, is a non-segmented, negative-sense, single-stranded, enveloped RNA virus (Figure 1) with potential applications as a vector for vaccination and treatment of human diseases. In-depth exploration of these applications has only become possible after the establishment of reverse genetics techniques to rescue recombinant viruses from plasmids encoding their complete genomes as cDNA2-5. Viral cDNA can be conveniently modified in vitro by using standard cloning procedures to alter the genotype of the virus and/or to include new transcriptional units. Rescue of such genetically modified viruses provides a valuable tool to understand factors affecting multiple stages of infection, as well as allows for the development and improvement of vectors for the expression and delivery of antigens for vaccination and therapy. Here we describe a protocol for the rescue of recombinant NDVs.
Immunology, Issue 80, Paramyxoviridae, Vaccines, Oncolytic Virotherapy, Immunity, Innate, Newcastle disease virus (NDV), MVA-T7, reverse genetics techniques, plasmid transfection, recombinant virus, HA assay
Play Button
High-throughput, Automated Extraction of DNA and RNA from Clinical Samples using TruTip Technology on Common Liquid Handling Robots
Authors: Rebecca C. Holmberg, Alissa Gindlesperger, Tinsley Stokes, Dane Brady, Nitu Thakore, Philip Belgrader, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc..
TruTip is a simple nucleic acid extraction technology whereby a porous, monolithic binding matrix is inserted into a pipette tip. The geometry of the monolith can be adapted for specific pipette tips ranging in volume from 1.0 to 5.0 ml. The large porosity of the monolith enables viscous or complex samples to readily pass through it with minimal fluidic backpressure. Bi-directional flow maximizes residence time between the monolith and sample, and enables large sample volumes to be processed within a single TruTip. The fundamental steps, irrespective of sample volume or TruTip geometry, include cell lysis, nucleic acid binding to the inner pores of the TruTip monolith, washing away unbound sample components and lysis buffers, and eluting purified and concentrated nucleic acids into an appropriate buffer. The attributes and adaptability of TruTip are demonstrated in three automated clinical sample processing protocols using an Eppendorf epMotion 5070, Hamilton STAR and STARplus liquid handling robots, including RNA isolation from nasopharyngeal aspirate, genomic DNA isolation from whole blood, and fetal DNA extraction and enrichment from large volumes of maternal plasma (respectively).
Genetics, Issue 76, Bioengineering, Biomedical Engineering, Molecular Biology, Automation, Laboratory, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Analytic Sample Preparation Methods, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Genetic Techniques, Molecular Diagnostic Techniques, Automation, Laboratory, Chemistry, Clinical, DNA/RNA extraction, automation, nucleic acid isolation, sample preparation, nasopharyngeal aspirate, blood, plasma, high-throughput, sequencing
Play Button
Microfluidic Chip Fabrication and Method to Detect Influenza
Authors: Qingqing Cao, Andy Fan, Catherine Klapperich.
Institutions: Boston University , Boston University .
Fast and effective diagnostics play an important role in controlling infectious disease by enabling effective patient management and treatment. Here, we present an integrated microfluidic thermoplastic chip with the ability to amplify influenza A virus in patient nasopharyngeal (NP) swabs and aspirates. Upon loading the patient sample, the microfluidic device sequentially carries out on-chip cell lysis, RNA purification and concentration steps within the solid phase extraction (SPE), reverse transcription (RT) and polymerase chain reaction (PCR) in RT-PCR chambers, respectively. End-point detection is performed using an off-chip Bioanalyzer (Agilent Technologies, Santa Clara, CA). For peripherals, we used a single syringe pump to drive reagent and samples, while two thin film heaters were used as the heat sources for the RT and PCR chambers. The chip is designed to be single layer and suitable for high throughput manufacturing to reduce the fabrication time and cost. The microfluidic chip provides a platform to analyze a wide variety of virus and bacteria, limited only by changes in reagent design needed to detect new pathogens of interest.
Bioengineering, Issue 73, Biomedical Engineering, Infection, Infectious Diseases, Virology, Microbiology, Genetics, Molecular Biology, Biochemistry, Mechanical Engineering, Microfluidics, Virus, Diseases, Respiratory Tract Diseases, Diagnosis, Microfluidic chip, influenza virus, flu, solid phase extraction (SPE), reverse transcriptase polymerase chain reaction, RT-PCR, PCR, DNA, RNA, on chip, assay, clinical, diagnostics
Play Button
High-throughput Detection Method for Influenza Virus
Authors: Pawan Kumar, Allison E. Bartoszek, Thomas M. Moran, Jack Gorski, Sanjib Bhattacharyya, Jose F. Navidad, Monica S. Thakar, Subramaniam Malarkannan.
Institutions: Blood Research Institute, Mount Sinai School of Medicine , Blood Research Institute, City of Milwaukee Health Department Laboratory, Medical College of Wisconsin , Medical College of Wisconsin .
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2. Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4. MDCK cells (104 or 5 x 103 per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 102-105 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 102-103 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
Immunology, Issue 60, Influenza virus, Virus titer, Epithelial cells
Play Button
Expression Analysis of Mammalian Linker-histone Subtypes
Authors: Magdalena Medrzycki, Yunzhe Zhang, Kaixiang Cao, Yuhong Fan.
Institutions: Georgia Institute of Technology .
Linker histone H1 binds to the nucleosome core particle and linker DNA, facilitating folding of chromatin into higher order structure. H1 is essential for mammalian development1 and regulates specific gene expression in vivo2-4. Among the highly conserved histone proteins, the family of H1 linker histones is the most heterogeneous group. There are 11 H1 subtypes in mammals that are differentially regulated during development and in different cell types. These H1 subtypes include 5 somatic H1s (H1a-e), the replacement H10, 4 germ cell specific H1 subtypes, and H1x5. The presence of multiple H1 subtypes that differ in DNA binding affinity and chromatin compaction ability6-9 provides an additional level of modulation of chromatin function. Thus, quantitative expression analysis of individual H1 subtypes, both of mRNA and proteins, is necessary for better understanding of the regulation of higher order chromatin structure and function. Here we describe a set of assays designed for analyzing the expression levels of individual H1 subtypes (Figure 1). mRNA expression of various H1 variant genes is measured by a set of highly sensitive and quantitative reverse transcription-PCR (qRT-PCR) assays, which are faster, more accurate and require much less samples compared with the alternative approach of Northern blot analysis. Unlike most other cellular mRNA messages, mRNAs for most histone genes, including the majority of H1 genes, lack a long polyA tail, but contain a stem-loop structure at the 3' untranslated region (UTR)10. Therefore, cDNAs are prepared from total RNA by reverse transcription using random primers instead of oligo-dT primers. Realtime PCR assays with primers specific to each H1 subtypes (Table 1) are performed to obtain highly quantitative measurement of mRNA levels of individual H1 subtypes. Expression of housekeeping genes are analyzed as controls for normalization. The relative abundance of proteins of each H1 subtype and core histones is obtained through reverse phase high-performance liquid chromatography (RP-HPLC) analysis of total histones extracted from mammalian cells11-13. The HPLC method and elution conditions described here give optimum separations of mouse H1 subtypes. By quantifying the HPLC profile, we calculate the relative proportion of individual H1 subtypes within H1 family, as well as determine the H1 to nucleosome ratio in the cells.
Genetics, Issue 61, H1 linker histones, histone H1 subtypes, chromatin, RT-PCR, HPLC, gene expression
Play Button
An Allelotyping PCR for Identifying Salmonella enterica serovars Enteritidis, Hadar, Heidelberg, and Typhimurium
Authors: John J. Maurer, Margie D. Lee, Ying Cheng, Adriana Pedroso.
Institutions: University of Georgia.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype. We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium. Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.
Immunology, Issue 53, PCR, Salmonella, multiplex, Serovar
Play Button
ampliPHOX Colorimetric Detection on a DNA Microarray for Influenza
Authors: Kevin R. Moulton, Amber W. Taylor, Kathy L. Rowlen, Erica D. Dawson.
Institutions: Inc..
DNA microarrays have emerged as a powerful tool for pathogen detection.1-5 For instance, many examples of the ability to type and subtype influenza virus have been demonstrated.6-11 The identification and subtyping of influenza on DNA microarrays has applications in both public health and the clinic for early detection, rapid intervention, and minimizing the impact of an influenza pandemic. Traditional fluorescence is currently the most commonly used microarray detection method. However, as microarray technology progresses towards clinical use,1 replacing expensive instrumentation with low cost detection technology exhibiting similar performance characteristics to fluorescence will make microarray assays more attractive and cost-effective. The ampliPHOX colorimetric detection technology is intended for research applications, and has a limit of detection within one order of magnitude of traditional fluorescence11, with a main advantage being an approximate ten-fold lower instrument cost compared to the confocal microarray scanners required for fluorescence microarray detection. Another advantage is the compact size of the instrument which allows for portability and flexibility, unlike traditional fluorescence instruments. Because the polymerization technology is not as inherently linear as fluorescence detection, however, it is best suited for lower density microarray applications in which a yes/no answer for the presence of a certain sequence is desired, such as for pathogen detection arrays. Currently the maximum spot density compatible with ampliPHOX detection is ˜1800 spots/array. Because of the spot density limitations, higher density microarrays are not suitable for ampliPHOX detection. Here, we present ampliPHOX colorimetric detection technology as a method of signal amplification on a low density microarray developed for the detection and characterization of influenza viruses (FluChip). Although this protocol uses the FluChip (a DNA microarray) as one specific application of ampliPHOX detection, any microarray incorporating biotinylated target can be labeled and detected in a similar manner. The microarray design and biotinylation of the target to be captured are the responsibility of the user. Once the biotinylated target has been captured on the array, ampliPHOX detection can be performed by first tagging the array with a streptavidin-label conjugate (ampliTAG). Upon light exposure using the ampliPHOX Reader instrument, polymerization of a monomer solution (ampliPHY) occurs only in regions containing ampliTAG-labeled targets. The polymer formed can be subsequently stained with a non-toxic solution to improve visual contrast, followed by imaging and analysis using a simple software package (ampliVIEW). The entire FluChip assay from un-extracted sample to result can be performed in about 6 hours, and the ampliPHOX detection steps described above can be completed in about 30 min.
Immunology, Issue 52, microarrays, colorimetric detection, ampliPHOX, diagnostic, low-density, pathogen detection, influenza
Play Button
Using a Pan-Viral Microarray Assay (Virochip) to Screen Clinical Samples for Viral Pathogens
Authors: Eunice C. Chen, Steve A. Miller, Joseph L. DeRisi, Charles Y. Chiu.
Institutions: University of California, San Francisco, University of California, San Francisco.
The diagnosis of viral causes of many infectious diseases is difficult due to the inherent sequence diversity of viruses as well as the ongoing emergence of novel viral pathogens, such as SARS coronavirus and 2009 pandemic H1N1 influenza virus, that are not detectable by traditional methods. To address these challenges, we have previously developed and validated a pan-viral microarray platform called the Virochip with the capacity to detect all known viruses as well as novel variants on the basis of conserved sequence homology1. Using the Virochip, we have identified the full spectrum of viruses associated with respiratory infections, including cases of unexplained critical illness in hospitalized patients, with a sensitivity equivalent to or superior to conventional clinical testing2-5. The Virochip has also been used to identify novel viruses, including the SARS coronavirus6,7, a novel rhinovirus clade5, XMRV (a retrovirus linked to prostate cancer)8, avian bornavirus (the cause of a wasting disease in parrots)9, and a novel cardiovirus in children with respiratory and diarrheal illness10. The current version of the Virochip has been ported to an Agilent microarray platform and consists of ~36,000 probes derived from over ~1,500 viruses in GenBank as of December of 2009. Here we demonstrate the steps involved in processing a Virochip assay from start to finish (~24 hour turnaround time), including sample nucleic acid extraction, PCR amplification using random primers, fluorescent dye incorporation, and microarray hybridization, scanning, and analysis.
Immunology, Issue 50, virus, microarray, Virochip, viral detection, genomics, clinical diagnostics, viral discovery, metagenomics, novel pathogen discovery
Play Button
Protocol for Recombinant RBD-based SARS Vaccines: Protein Preparation, Animal Vaccination and Neutralization Detection
Authors: Lanying Du, Xiujuan Zhang, Jixiang Liu, Shibo Jiang.
Institutions: New York Blood Center.
Based on their safety profile and ability to induce potent immune responses against infections, subunit vaccines have been used as candidates for a wide variety of pathogens 1-3. Since the mammalian cell system is capable of post-translational modification, thus forming properly folded and glycosylated proteins, recombinant proteins expressed in mammalian cells have shown the greatest potential to maintain high antigenicity and immunogenicity 4-6. Although no new cases of SARS have been reported since 2004, future outbreaks are a constant threat; therefore, the development of vaccines against SARS-CoV is a prudent preventive step and should be carried out. The RBD of SARS-CoV S protein plays important roles in receptor binding and induction of specific neutralizing antibodies against virus infection 7-9. Therefore, in this protocol, we describe novel methods for developing a RBD-based subunit vaccine against SARS. Briefly, the recombinant RBD protein (rRBD) was expressed in culture supernatant of mammalian 293T cells to obtain a correctly folded protein with proper conformation and high immunogenicity 6. The transfection of the recombinant plasmid encoding RBD to the cells was then performed using a calcium phosphate transfection method 6,10 with some modifications. Compared with the lipid transfection method 11,12, this modified calcium phosphate transfection method is cheaper, easier to handle, and has the potential to reach high efficacy once a transfection complex with suitable size and shape is formed 13,14. Finally, a SARS pseudovirus neutralization assay was introduced in the protocol and used to detect the neutralizing activity of sera of mice vaccinated with rRBD protein. This assay is relatively safe, does not involve an infectious SARS-CoV, and can be performed without the requirement of a biosafety-3 laboratory 15. The protocol described here can also be used to design and study recombinant subunit vaccines against other viruses with class I fusion proteins, for example, HIV, respiratory syncytial virus (RSV), Ebola virus, influenza virus, as well as Nipah and Handra viruses. In addition, the methods for generating a pseudovirus and subsequently establishing a pseudovirus neutralization assay can be applied to all these viruses.
Immunology, Issue 51, SARS, receptor-binding domain, subunit vaccines, immunization, neutralization detection
Play Button
Application of Long-term cultured Interferon-γ Enzyme-linked Immunospot Assay for Assessing Effector and Memory T Cell Responses in Cattle
Authors: Mayara F. Maggioli, Mitchell V. Palmer, H. Martin Vordermeier, Adam O. Whelan, James M. Fosse, Brian J. Nonnecke, W. Ray Waters.
Institutions: United States Department of Agriculture, Iowa State University, UK Veterinary Laboratories Agency, United States Department of Agriculture.
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primarily effector and effector memory T cell responses. Central memory T cell responses by CD4+ T cells to vaccination, on the other hand, may be used to predict vaccine efficacy, as demonstrated with simian immunodeficiency virus infection of non-human primates, tuberculosis in mice, and malaria in humans. Several studies with mice and humans as well as unpublished data on cattle, have demonstrated that interferon-γ ELISPOT assays measure central memory T cell responses. With this assay, peripheral blood mononuclear cells are cultured in decreasing concentration of antigen for 10 to 14 days (long-term culture), allowing effector responses to peak and wane; facilitating central memory T cells to differentiate and expand within the culture.
Immunology, Issue 101, Immunology, bovine tuberculosis, CD4 T cells, vaccine.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.