JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.
PUBLISHED: 04-21-2015
Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
27 Related JoVE Articles!
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Application of Two-spotted Spider Mite Tetranychus urticae for Plant-pest Interaction Studies
Authors: Marc Cazaux, Marie Navarro, Kristie A. Bruinsma, Vladimir Zhurov, Tara Negrave, Thomas Van Leeuwen, Vojislava Grbic, Miodrag Grbic.
Institutions: The University of Western Ontario, Instituto de Ciencias de la Vid y el Vino, Ghent University, University of Amsterdam.
The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7. T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions. Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application.
Environmental Sciences, Issue 89, two-spotted spider mite, plant-herbivore interaction, Tetranychus urticae, Arabidopsis thaliana, plant damage analysis, herbivory, plant pests
Play Button
High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages
Authors: Jing Wu, Roberta Pugh, Richard C. Laughlin, Helene Andrews-Polymenis, Michael McClelland, Andreas J. Bäumler, L. Garry Adams.
Institutions: Texas A&M University, Texas A&M University System Health Science Center, University of California, Irvine, University of California, Davis.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.
Infectious Diseases, Issue 90, Salmonella enterica Typhimurium, association, invasion, replication, phenotype, intracellular pathogens, macrophages
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
Play Button
Enhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution
Authors: Francine E. Garrett-Bakelman, Caroline K. Sheridan, Thadeous J. Kacmarczyk, Jennifer Ishii, Doron Betel, Alicia Alonso, Christopher E. Mason, Maria E. Figueroa, Ari M. Melnick.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College, Weill Cornell Medical College, University of Michigan.
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.
Genetics, Issue 96, Epigenetics, bisulfite sequencing, DNA methylation, genomic DNA, 5-methylcytosine, high-throughput
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
Play Button
Loop-mediated Isothermal Amplification (LAMP) Assays for the Species-specific Detection of Eimeria that Infect Chickens
Authors: Christopher P. Barkway, Rebecca L. Pocock, Vladimir Vrba, Damer P. Blake.
Institutions: Royal Veterinary College, London, Research Institute of Biopharmacy and Veterinary Drugs.
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.
Infection, Issue 96, Loop-mediated isothermal amplification, LAMP, Coccidiosis, Eimeria, Chickens, Diagnostics, Field tools
Play Button
Forward Genetics Screens Using Macrophages to Identify Toxoplasma gondii Genes Important for Resistance to IFN-γ-Dependent Cell Autonomous Immunity
Authors: Odaelys Walwyn, Sini Skariah, Brian Lynch, Nathaniel Kim, Yukari Ueda, Neal Vohora, Josh Choe, Dana G. Mordue.
Institutions: New York Medical College.
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified parasite gene to establishment of chronic infection.
Immunology, Issue 97, Toxoplasma, macrophages, innate immunity, intracellular pathogen, immune evasion, infectious disease, forward genetics, parasite
Play Button
Three-Dimensional (3D) Tumor Spheroid Invasion Assay
Authors: Maria Vinci, Carol Box, Suzanne A. Eccles.
Institutions: The Institute of Cancer Research, The Institute of Cancer Research.
Invasion of surrounding normal tissues is generally considered to be a key hallmark of malignant (as opposed to benign) tumors. For some cancers in particular (e.g., brain tumors such as glioblastoma multiforme and squamous cell carcinoma of the head and neck – SCCHN) it is a cause of severe morbidity and can be life-threatening even in the absence of distant metastases. In addition, cancers which have relapsed following treatment unfortunately often present with a more aggressive phenotype. Therefore, there is an opportunity to target the process of invasion to provide novel therapies that could be complementary to standard anti-proliferative agents. Until now, this strategy has been hampered by the lack of robust, reproducible assays suitable for a detailed analysis of invasion and for drug screening. Here we provide a simple micro-plate method (based on uniform, self-assembling 3D tumor spheroids) which has great potential for such studies. We exemplify the assay platform using a human glioblastoma cell line and also an SCCHN model where the development of resistance against targeted epidermal growth factor receptor (EGFR) inhibitors is associated with enhanced matrix-invasive potential. We also provide two alternative methods of semi-automated quantification: one using an imaging cytometer and a second which simply requires standard microscopy and image capture with digital image analysis.
Medicine, Issue 99, invasion, metastasis, 3D, tumor spheroids, extracellular matrix, imaging, high-throughput, drug development.
Play Button
Imaging InlC Secretion to Investigate Cellular Infection by the Bacterial Pathogen Listeria monocytogenes
Authors: Andreas Kühbacher, Edith Gouin, Jason Mercer, Mario Emmenlauer, Christoph Dehio, Pascale Cossart, Javier Pizarro-Cerdá.
Institutions: Pasteur Institute, INSERM U604, Institut National de la Recherche Agronomique (INRA), USC2020, ETH Zürich, University of Basel.
Bacterial intracellular pathogens can be conceived as molecular tools to dissect cellular signaling cascades due to their capacity to exquisitely manipulate and subvert cell functions which are required for the infection of host target tissues. Among these bacterial pathogens, Listeria monocytogenes is a Gram positive microorganism that has been used as a paradigm for intracellular parasitism in the characterization of cellular immune responses, and which has played instrumental roles in the discovery of molecular pathways controlling cytoskeletal and membrane trafficking dynamics. In this article, we describe a robust microscopical assay for the detection of late cellular infection stages of L. monocytogenes based on the fluorescent labeling of InlC, a secreted bacterial protein which accumulates in the cytoplasm of infected cells; this assay can be coupled to automated high-throughput small interfering RNA screens in order to characterize cellular signaling pathways involved in the up- or down-regulation of infection.
Immunology, Issue 79, HeLa Cells, Listeria monocytogenes, Gram-positive Bacterial Infections, Fluorescence, High-Throughput Screening Assays, RNA Interference, Listeria monocytogenes, Infection, microscopy, small interfering RNA
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects
Authors: Martin De Vos, Georg Jander.
Institutions: Cornell University.
Larvae of the small white cabbage butterfly are a pest in agricultural settings. This caterpillar species feeds from plants in the cabbage family, which include many crops such as cabbage, broccoli, Brussel sprouts etc. Rearing of the insects takes place on cabbage plants in the greenhouse. At least two cages are needed for the rearing of Pieris rapae. One for the larvae and the other to contain the adults, the butterflies. In order to investigate the role of plant hormones and toxic plant chemicals in resistance to this insect pest, we demonstrate two experiments. First, determination of the role of jasmonic acid (JA - a plant hormone often indicated in resistance to insects) in resistance to the chewing insect Pieris rapae. Caterpillar growth can be compared on wild-type and mutant plants impaired in production of JA. This experiment is considered "No Choice", because larvae are forced to subsist on a single plant which synthesizes or is deficient in JA. Second, we demonstrate an experiment that investigates the role of glucosinolates, which are used as oviposition (egg-laying) signals. Here, we use WT and mutant Arabidopsis impaired in glucosinolate production in a "Choice" experiment in which female butterflies are allowed to choose to lay their eggs on plants of either genotype. This video demonstrates the experimental setup for both assays as well as representative results.
Plant Biology, Issue 15, Annual Review, Plant Resistance, Herbivory, Arabidopsis thaliana, Pieris rapae, Caterpillars, Butterflies, Jasmonic Acid, Glucosinolates
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
Play Button
Protocols for Microapplicator-assisted Infection of Lepidopteran Larvae with Baculovirus
Authors: Huarong Li, Wendy Sparks, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. . This video shows how lepidopteran larvae can be infected with microapplicator techniques in the gut with baculovirus polyhedra and in the hemolymph with budded virus. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents. Formulation and application of baculoviruses for pest control purposes are described elsewhere.
Plant Biology, Issue 18, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Play Button
DNA-based Fish Species Identification Protocol
Authors: Rachel Formosa, Harini Ravi, Scott Happe, Danielle Huffman, Natalia Novoradovskaya, Robert Kincaid, Steve Garrett.
Institutions: Agilent Technologies.
We have developed a fast, simple, and accurate DNA-based screening method to identify the fish species present in fresh and processed seafood samples. This versatile method employs PCR amplification of genomic DNA extracted from fish samples, followed by restriction fragment length polymorphism (RFLP) analysis to generate fragment patterns that can be resolved on the Agilent 2100 Bioanalyzer and matched to the correct species using RFLP pattern matching software. The fish identification method uses a simple, reliable, spin column- based protocol to isolate DNA from fish samples. The samples are treated with proteinase K to release the nucleic acids into solution. DNA is then isolated by suspending the sample in binding buffer and loading onto a micro- spin cup containing a silica- based fiber matrix. The nucleic acids in the sample bind to the fiber matrix. The immobilized nucleic acids are washed to remove contaminants, and total DNA is recovered in a final volume of 100 μl. The isolated DNA is ready for PCR amplification with the provided primers that bind to sequences found in all fish genomes. The PCR products are then digested with three different restriction enzymes and resolved on the Agilent 2100 Bioanalyzer. The fragment lengths produced in the digestion reactions can be used to determine the species of fish from which the DNA sample was prepared, using the RFLP pattern matching software containing a database of experimentally- derived RFLP patterns from commercially relevant fish species.
Cellular Biology, Issue 38, seafood, fish, mislabeling, authenticity, PCR, Bioanalyzer, food, RFLP, identity
Play Button
A Noninvasive Hair Sampling Technique to Obtain High Quality DNA from Elusive Small Mammals
Authors: Philippe Henry, Alison Henry, Michael A. Russello.
Institutions: University of British Columbia, Okanagan Campus.
Noninvasive genetic sampling approaches are becoming increasingly important to study wildlife populations. A number of studies have reported using noninvasive sampling techniques to investigate population genetics and demography of wild populations1. This approach has proven to be especially useful when dealing with rare or elusive species2. While a number of these methods have been developed to sample hair, feces and other biological material from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. In this video, we present a novel, inexpensive and noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We describe the general set-up of the hair snare, which consists of strips of packing tape arranged in a web-like fashion and placed along travelling routes in the pikas’ habitat. We illustrate the efficiency of the snare at collecting a large quantity of hair that can then be collected and brought back to the lab. We then demonstrate the use of the DNA IQ system (Promega) to isolate DNA and showcase the utility of this method to amplify commonly used molecular markers including nuclear microsatellites, amplified fragment length polymorphisms (AFLPs), mitochondrial sequences (800bp) as well as a molecular sexing marker. Overall, we demonstrate the utility of this novel noninvasive hair snare as a sampling technique for wildlife population biologists. We anticipate that this approach will be applicable to a variety of small mammals, opening up areas of investigation within natural populations, while minimizing impact to study organisms.
Genetics, Issue 49, Conservation genetics, noninvasive genetic sampling, Hair snares, Microsatellites, AFLPs, American pika, Ochotona princeps
Play Button
An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies
Authors: Nicholas Manoukis, Scott Geib, Danny Seo, Michael McKenney, Roger Vargas, Eric Jang.
Institutions: US Pacific Basin Agricultural Research Center.
Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements.
Developmental Biology, Issue 53, Biological control, Tephritidae, parasitoid, French Polynesia, insectary
Play Button
Characterizing Herbivore Resistance Mechanisms: Spittlebugs on Brachiaria spp. as an Example
Authors: Soroush Parsa, Guillermo Sotelo, Cesar Cardona.
Institutions: CIAT.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore's growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3. We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.
Plant Biology, Issue 52, host plant resistance, antibiosis, antixenosis, tolerance, Brachiaria, spittlebugs
Play Button
A PCR-based Genotyping Method to Distinguish Between Wild-type and Ornamental Varieties of Imperata cylindrica
Authors: Leland J. Cseke, Sharon M. Talley.
Institutions: The University of Alabama, Huntsville, Center for Plant Health Science and Technology.
Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed. Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce viable wind-dispersed seeds that spread cogongrass over wide distances5-7. JBG has a slightly different genotype than cogongrass and may be able to form viable hybrids with cogongrass. To add to the problem, JBG is more cold and shade tolerant than cogongrass8-10, and gene flow between these two varieties is likely to generate hybrids that are more aggressive, shade tolerant, and cold hardy than wild-type cogongrass. While wild-type cogongrass currently infests over 490 million hectares worldwide, in the Southeast U.S. it infests over 500,000 hectares and is capable of occupying most of the U.S. as it rapidly spreads northward due to its broad niche and geographic potential3,7,11. The potential of a genetic crossing is a serious concern for the USDA-APHIS Federal Noxious Week Program. Currently, the USDA-APHIS prohibits JBG in states where there are major cogongrass infestations (e.g., Florida, Alabama, Mississippi). However, preventing the two varieties from combining can prove more difficult as cogongrass and JBG expand their distributions. Furthermore, the distribution of the JBG revert is currently unknown and without the ability to identify these varieties through morphology, some cogongrass infestations may be the result of JBG reverts. Unfortunately, current molecular methods of identification typically rely on AFLP (Amplified Fragment Length Polymorphisms) and DNA sequencing, both of which are time consuming and costly. Here, we present the first cost-effective and reliable PCR-based molecular genotyping method to accurately distinguish between cogongrass and JBG revert.
Molecular Biology, Issue 60, Molecular genotyping, Japanese blood grass, Red Baron, cogongrass, invasive plants
Play Button
Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation
Authors: Yufen Goh, Melissa J. Fullwood, Huay Mei Poh, Su Qin Peh, Chin Thing Ong, Jingyao Zhang, Xiaoan Ruan, Yijun Ruan.
Institutions: Agency for Science, Technology and Research, Singapore, A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, National University of Singapore, Singapore.
Genomes are organized into three-dimensional structures, adopting higher-order conformations inside the micron-sized nuclear spaces 7, 2, 12. Such architectures are not random and involve interactions between gene promoters and regulatory elements 13. The binding of transcription factors to specific regulatory sequences brings about a network of transcription regulation and coordination 1, 14. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) was developed to identify these higher-order chromatin structures 5,6. Cells are fixed and interacting loci are captured by covalent DNA-protein cross-links. To minimize non-specific noise and reduce complexity, as well as to increase the specificity of the chromatin interaction analysis, chromatin immunoprecipitation (ChIP) is used against specific protein factors to enrich chromatin fragments of interest before proximity ligation. Ligation involving half-linkers subsequently forms covalent links between pairs of DNA fragments tethered together within individual chromatin complexes. The flanking MmeI restriction enzyme sites in the half-linkers allow extraction of paired end tag-linker-tag constructs (PETs) upon MmeI digestion. As the half-linkers are biotinylated, these PET constructs are purified using streptavidin-magnetic beads. The purified PETs are ligated with next-generation sequencing adaptors and a catalog of interacting fragments is generated via next-generation sequencers such as the Illumina Genome Analyzer. Mapping and bioinformatics analysis is then performed to identify ChIP-enriched binding sites and ChIP-enriched chromatin interactions 8. We have produced a video to demonstrate critical aspects of the ChIA-PET protocol, especially the preparation of ChIP as the quality of ChIP plays a major role in the outcome of a ChIA-PET library. As the protocols are very long, only the critical steps are shown in the video.
Genetics, Issue 62, ChIP, ChIA-PET, Chromatin Interactions, Genomics, Next-Generation Sequencing
Play Button
Transmitting Plant Viruses Using Whiteflies
Authors: Jane E. Polston, H. Capobianco.
Institutions: University of Florida .
Whiteflies, Hemiptera: Aleyrodidae, Bemisia tabaci, a complex of morphologically indistinquishable species5, are vectors of many plant viruses. Several genera of these whitefly-transmitted plant viruses (Begomovirus, Carlavirus, Crinivirus, Ipomovirus, Torradovirus) include several hundred species of emerging and economically significant pathogens of important food and fiber crops (reviewed by9,10,16). These viruses do not replicate in their vector but nevertheless are moved readily from plant to plant by the adult whitefly by various means (reviewed by2,6,7,9,10,11,17). For most of these viruses whitefly feeding is required for acquisition and inoculation, while for others only probing is required. Many of these viruses are unable or cannot be easily transmitted by other means. Therefore maintenance of virus cultures, biological and molecular characterization (identification of host range and symptoms)3,13, ecology2,12, require that the viruses be transmitted to experimental hosts using the whitefly vector. In addition the development of new approaches to management, such as evaluation of new chemicals14 or compounds15, new cultural approaches1,4,19, or the selection and development of resistant cultivars7,8,18, requires the use of whiteflies for virus transmission. The use of whitefly transmission of plant viruses for the selection and development of resistant cultivars in breeding programs is particularly challenging7. Effective selection and screening for resistance employs large numbers of plants and there is a need for 100% of the plants to be inoculated in order to find the few genotypes which possess resistance genes. These studies use very large numbers of viruliferous whiteflies, often several times per year. Whitefly maintenance described here can generate hundreds or thousands of adult whiteflies on plants each week, year round, without the contamination of other plant viruses. Plants free of both whiteflies and virus must be produced to introduce into the whitefly colony each week. Whitefly cultures must be kept free of whitefly pathogens, parasites, and parasitoids that can reduce whitefly populations and/or reduce the transmission efficiency of the virus. Colonies produced in the manner described can be quickly scaled to increase or decrease population numbers as needed, and can be adjusted to accommodate the feeding preferences of the whitefly based on the plant host of the virus. There are two basic types of whitefly colonies that can be maintained: a nonviruliferous and a viruliferous whitefly colony. The nonviruliferous colony is composed of whiteflies reared on virus-free plants and allows the weekly availability of whiteflies which can be used to transmit viruses from different cultures. The viruliferous whitefly colony, composed of whiteflies reared on virus-infected plants, allows weekly availability of whiteflies which have acquired the virus thus omitting one step in the virus transmission process.
Plant Biology, Issue 81, Virology, Molecular Biology, Botany, Pathology, Infection, Plant viruses, Bemisia tabaci, Whiteflies, whitefly, insect transmission, Begomovirus, Carlavirus, Crinivirus, Ipomovirus, host pathogen interaction, virus, insect, plant
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Chick Heart Invasion Assay for Testing the Invasiveness of Cancer Cells and the Activity of Potentially Anti-invasive Compounds
Authors: Marc E. Bracke, Bart I. Roman, Christian V. Stevens, Liselot M. Mus, Virinder S. Parmar, Olivier De Wever, Marc M. Mareel.
Institutions: University of Ghent, University of Ghent, University of Delhi.
The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion.
Medicine, Issue 100, cancer, invasion, organ culture, histology, heart, chicken, ecosystem, anti-invasive compound, polyphenolics, structure-activity, immunohistochemistry
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.