JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
PUBLISHED: 04-21-2015
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify ? = -62°, ? = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of ?-? carbons of the classic Pauling ?-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) ?-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (?, ?) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.
Authors: Nikolai Hentze, Matthias P. Mayer.
Published: 11-29-2013
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
17 Related JoVE Articles!
Play Button
Mass Spectrometric Approaches to Study Protein Structure and Interactions in Lyophilized Powders
Authors: Balakrishnan S. Moorthy, Lavanya K. Iyer, Elizabeth M. Topp.
Institutions: Purdue University.
Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (Nfast, Nslow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol.
Chemistry, Issue 98, Amide hydrogen/deuterium exchange, photolytic labeling, mass spectrometry, lyophilized formulations, photo-leucine, solid-state, protein structure, protein conformation, protein dynamics, secondary structure, protein stability, excipients
Play Button
Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR
Authors: Michal S. Shoshan, Edit Y. Tshuva, Deborah E. Shalev.
Institutions: The Hebrew University of Jerusalem, The Hebrew University of Jerusalem.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy. NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.
Chemistry, Issue 82, solution structure determination, NMR, peptide models, copper-binding proteins, copper complexes
Play Button
Do's and Don'ts of Cryo-electron Microscopy: A Primer on Sample Preparation and High Quality Data Collection for Macromolecular 3D Reconstruction
Authors: Vanessa Cabra, Montserrat Samsó.
Institutions: Virginia Commonwealth University.
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
Structural Biology, Issue 95, 3D electron microscopy, cryo-electron microscopy, membrane proteins, ryanodine receptor, single particle image processing, transmission electron microscopy
Play Button
Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy
Authors: Víctor A. Lórenz-Fonfría, Joachim Heberle.
Institutions: Freie Universität Berlin.
Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With ~102-103 repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as ~10-4, sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.
Biophysics, Issue 88, bacteriorhodopsin, channelrhodopsin, attenuated total reflection, proton transfer, protein dynamics, infrared spectroscopy, time-resolved spectroscopy, step-scan, membrane proteins, singular value decomposition
Play Button
Scalable Nanohelices for Predictive Studies and Enhanced 3D Visualization
Authors: Kwyn A. Meagher, Benjamin N. Doblack, Mercedes Ramirez, Lilian P. Davila.
Institutions: University of California Merced, University of California Merced.
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications.  For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately.  To study the effect of local structure on the properties of these complex geometries one must develop realistic models.  To date, software packages are rather limited in creating atomistic helical models.  This work focuses on producing atomistic models of silica glass (SiO2) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of “bulk” silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented.  The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix.  With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions.  The second method involves a more robust code which allows flexibility in modeling nanohelical structures.  This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models.  Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created.  An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material.  In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures.  One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Physics, Issue 93, Helical atomistic models; open-source coding; graphical user interface; visualization software; molecular dynamics simulations; graphical processing unit accelerated simulations.
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Formation of Ordered Biomolecular Structures by the Self-assembly of Short Peptides
Authors: Sivan Yuran, Meital Reches.
Institutions: The Hebrew University of Jerusalem.
In nature, complex functional structures are formed by the self-assembly of biomolecules under mild conditions. Understanding the forces that control self-assembly and mimicking this process in vitro will bring about major advances in the areas of materials science and nanotechnology. Among the available biological building blocks, peptides have several advantages as they present substantial diversity, their synthesis in large scale is straightforward, and they can easily be modified with biological and chemical entities1,2. Several classes of designed peptides such as cyclic peptides, amphiphile peptides and peptide-conjugates self-assemble into ordered structures in solution. Homoaromatic dipeptides, are a class of short self-assembled peptides that contain all the molecular information needed to form ordered structures such as nanotubes, spheres and fibrils3-8. A large variety of these peptides is commercially available. This paper presents a procedure that leads to the formation of ordered structures by the self-assembly of homoaromatic peptides. The protocol requires only commercial reagents and basic laboratory equipment. In addition, the paper describes some of the methods available for the characterization of peptide-based assemblies. These methods include electron and atomic force microscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). Moreover, the manuscript demonstrates the blending of peptides (coassembly) and the formation of a "beads on a string"-like structure by this process.9 The protocols presented here can be adapted to other classes of peptides or biological building blocks and can potentially lead to the discovery of new peptide-based structures and to better control of their assembly.
Chemistry, Issue 81, Materials (General), self-assembly, peptides, diphenylalanine, atomatic interactions, coassembly, molecular recognition
Play Button
Designing Silk-silk Protein Alloy Materials for Biomedical Applications
Authors: Xiao Hu, Solomon Duki, Joseph Forys, Jeffrey Hettinger, Justin Buchicchio, Tabbetha Dobbins, Catherine Yang.
Institutions: Rowan University, Rowan University, Cooper Medical School of Rowan University, Rowan University.
Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys.
Bioengineering, Issue 90, protein alloys, biomaterials, biomedical, silk blends, computational simulation, implantable electronic devices
Play Button
Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
Authors: Xin Meng, Gongpu Zhao, Peijun Zhang.
Institutions: University of Pittsburgh School of Medicine.
Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy1 and two-dimensional (2D) electron crystallography2 have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method3, which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments4, microtubules5, amyloid fibers6, tobacco mosaic viruses7, and bacteria flagella8, and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable. In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid9 is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly.
Immunology, Issue 54, cryo-electron microscopy, helical indexing, helical real-space reconstruction, tubular assemblies, HIV-1 capsid
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Designing a Bio-responsive Robot from DNA Origami
Authors: Eldad Ben-Ishay, Almogit Abu-Horowitz, Ido Bachelet.
Institutions: Bar-Ilan University.
Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 . The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings.
Bioengineering, Issue 77, Genetics, Biomedical Engineering, Molecular Biology, Medicine, Genomics, Nanotechnology, Nanomedicine, DNA origami, nanorobot, caDNAno, DNA, DNA Origami, nucleic acids, DNA structures, CAD, sequencing
Play Button
Analyzing and Building Nucleic Acid Structures with 3DNA
Authors: Andrew V. Colasanti, Xiang-Jun Lu, Wilma K. Olson.
Institutions: Rutgers - The State University of New Jersey, Columbia University .
The 3DNA software package is a popular and versatile bioinformatics tool with capabilities to analyze, construct, and visualize three-dimensional nucleic acid structures. This article presents detailed protocols for a subset of new and popular features available in 3DNA, applicable to both individual structures and ensembles of related structures. Protocol 1 lists the set of instructions needed to download and install the software. This is followed, in Protocol 2, by the analysis of a nucleic acid structure, including the assignment of base pairs and the determination of rigid-body parameters that describe the structure and, in Protocol 3, by a description of the reconstruction of an atomic model of a structure from its rigid-body parameters. The most recent version of 3DNA, version 2.1, has new features for the analysis and manipulation of ensembles of structures, such as those deduced from nuclear magnetic resonance (NMR) measurements and molecular dynamic (MD) simulations; these features are presented in Protocols 4 and 5. In addition to the 3DNA stand-alone software package, the w3DNA web server, located at, provides a user-friendly interface to selected features of the software. Protocol 6 demonstrates a novel feature of the site for building models of long DNA molecules decorated with bound proteins at user-specified locations.
Genetics, Issue 74, Molecular Biology, Biochemistry, Bioengineering, Biophysics, Genomics, Chemical Biology, Quantitative Biology, conformational analysis, DNA, high-resolution structures, model building, molecular dynamics, nucleic acid structure, RNA, visualization, bioinformatics, three-dimensional, 3DNA, software
Play Button
Determination of the Gas-phase Acidities of Oligopeptides
Authors: Jianhua Ren, Ashish Sawhney, Yuan Tian, Bhupinder Padda, Patrick Batoon.
Institutions: University of the Pacific.
Amino acid residues located at different positions in folded proteins often exhibit different degrees of acidities. For example, a cysteine residue located at or near the N-terminus of a helix is often more acidic than that at or near the C-terminus 1-6. Although extensive experimental studies on the acid-base properties of peptides have been carried out in the condensed phase, in particular in aqueous solutions 6-8, the results are often complicated by solvent effects 7. In fact, most of the active sites in proteins are located near the interior region where solvent effects have been minimized 9,10. In order to understand intrinsic acid-base properties of peptides and proteins, it is important to perform the studies in a solvent-free environment. We present a method to measure the acidities of oligopeptides in the gas-phase. We use a cysteine-containing oligopeptide, Ala3CysNH2 (A3CH), as the model compound. The measurements are based on the well-established extended Cooks kinetic method (Figure 1) 11-16. The experiments are carried out using a triple-quadrupole mass spectrometer interfaced with an electrospray ionization (ESI) ion source (Figure 2). For each peptide sample, several reference acids are selected. The reference acids are structurally similar organic compounds with known gas-phase acidities. A solution of the mixture of the peptide and a reference acid is introduced into the mass spectrometer, and a gas-phase proton-bound anionic cluster of peptide-reference acid is formed. The proton-bound cluster is mass isolated and subsequently fragmented via collision-induced dissociation (CID) experiments. The resulting fragment ion abundances are analyzed using a relationship between the acidities and the cluster ion dissociation kinetics. The gas-phase acidity of the peptide is then obtained by linear regression of the thermo-kinetic plots 17,18. The method can be applied to a variety of molecular systems, including organic compounds, amino acids and their derivatives, oligonucleotides, and oligopeptides. By comparing the gas-phase acidities measured experimentally with those values calculated for different conformers, conformational effects on the acidities can be evaluated.
Chemistry, Issue 76, Biochemistry, Molecular Biology, Oligopeptide, gas-phase acidity, kinetic method, collision-induced dissociation, triple-quadrupole mass spectrometry, oligopeptides, peptides, mass spectrometry, MS
Play Button
Amide Hydrogen/Deuterium Exchange & MALDI-TOF Mass Spectrometry Analysis of Pak2 Activation
Authors: Yuan-Hao Hsu, Jolinda A. Traugh.
Institutions: Tunghai University, University of California, Riverside .
Amide hydrogen/deuterium exchange (H/D exchange) coupled with mass spectrometry has been widely used to analyze the interface of protein-protein interactions, protein conformational changes, protein dynamics and protein-ligand interactions. H/D exchange on the backbone amide positions has been utilized to measure the deuteration rates of the micro-regions in a protein by mass spectrometry1,2,3. The resolution of this method depends on pepsin digestion of the deuterated protein of interest into peptides that normally range from 3-20 residues. Although the resolution of H/D exchange measured by mass spectrometry is lower than the single residue resolution measured by the Heteronuclear Single Quantum Coherence (HSQC) method of NMR, the mass spectrometry measurement in H/D exchange is not restricted by the size of the protein4. H/D exchange is carried out in an aqueous solution which maintains protein conformation. We provide a method that utilizes the MALDI-TOF for detection2, instead of a HPLC/ESI (electrospray ionization)-MS system5,6. The MALDI-TOF provides accurate mass intensity data for the peptides of the digested protein, in this case protein kinase Pak2 (also called γ-Pak). Proteolysis of Pak 2 is carried out in an offline pepsin digestion. This alternative method, when the user does not have access to a HPLC and pepsin column connected to mass spectrometry, or when the pepsin column on HPLC does not result in an optimal digestion map, for example, the heavily disulfide-bonded secreted Phospholipase A2 (sPLA2). Utilizing this method, we successfully monitored changes in the deuteration level during activation of Pak2 by caspase 3 cleavage and autophosphorylation7,8,9.
Biochemistry, Issue 57, Deuterium, H/D exchange, Mass Spectrometry, Pak2, Caspase 3, MALDI-TOF
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
Surface Enhanced Raman Spectroscopy Detection of Biomolecules Using EBL Fabricated Nanostructured Substrates
Authors: Robert F. Peters, Luis Gutierrez-Rivera, Steven K. Dew, Maria Stepanova.
Institutions: University of Alberta, National Research Council of Canada.
Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.
Engineering, Issue 97, Bio-functionalized surfaces, proteins, aptamers, molecular recognition, nanostructures, electron beam lithography, surface-enhanced Raman spectroscopy.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.