JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Revisiting community case management of childhood pneumonia: perceptions of caregivers and grass root health providers in Uttar Pradesh and Bihar, northern India.
.
PLoS ONE
PUBLISHED: 04-22-2015
Community-acquired pneumonia (CAP) is the leading cause of under-five mortality globally with almost one-quarter of deaths occurring in India.
Authors: Malek Saleh, Mohammed R. Abdullah, Christian Schulz, Thomas Kohler, Thomas Pribyl, Inga Jensch, Sven Hammerschmidt.
Published: 02-23-2014
ABSTRACT
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.
22 Related JoVE Articles!
Play Button
Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia
Authors: Sheldon Yao, John Hassani, Martin Gagne, Gebe George, Wolfgang Gilliar.
Institutions: New York Institute of Technology College of Osteopathic Medicine.
Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1) Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10. The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11
Medicine, Issue 87, Pneumonia, osteopathic manipulative medicine (OMM) and techniques (OMT), lymphatic, rib raising, thoracic pump, muscle energy, doming diaphragm, alternative treatment
50687
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
51580
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
52036
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
52131
Play Button
Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models
Authors: Teresa E. Lever, Sabrina M. Braun, Ryan T. Brooks, Rebecca A. Harris, Loren L. Littrell, Ryan M. Neff, Cameron J. Hinkel, Mitchell J. Allen, Mollie A. Ulsas.
Institutions: University of Missouri, University of Missouri, University of Missouri.
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models.
Medicine, Issue 97, mouse, murine, rodent, swallowing, deglutition, dysphagia, videofluoroscopy, radiation, iohexol, barium, palatability, taste, translational, disease models
52319
Play Button
Modifying the Bank Erosion Hazard Index (BEHI) Protocol for Rapid Assessment of Streambank Erosion in Northeastern Ohio
Authors: Sara E. Newton, Deanna M. Drenten.
Institutions: Cleveland Metroparks, Case Western Reserve University.
Understanding the source of pollution in a stream is vital to preserving, restoring, and maintaining the stream’s function and habitat it provides. Sediments from highly eroding streambanks are a major source of pollution in a stream system and have the potential to jeopardize habitat, infrastructure, and stream function. Watershed management practices throughout the Cleveland Metroparks attempt to locate and inventory the source and rate the risk of potential streambank erosion to assist in formulating effect stream, riparian, and habitat management recommendations. The Bank Erosion Hazard Index (BEHI), developed by David Rosgen of Wildland Hydrology is a fluvial geomorphic assessment procedure used to evaluate the susceptibility of potential streambank erosion based on a combination of several variables that are sensitive to various processes of erosion. This protocol can be time consuming, difficult for non-professionals, and confined to specific geomorphic regions. To address these constraints and assist in maintaining consistency and reducing user bias, modifications to this protocol include a “Pre-Screening Questionnaire”, elimination of the Study Bank-Height Ratio metric including the bankfull determination, and an adjusted scoring system. This modified protocol was used to assess several high priority streams within the Cleveland Metroparks. The original BEHI protocol was also used to confirm the results of the modified BEHI protocol. After using the modified assessment in the field, and comparing it to the original BEHI method, the two were found to produce comparable BEHI ratings of the streambanks, while significantly reducing the amount of time and resources needed to complete the modified protocol.
Environmental Sciences, Issue 96, Streambank erosion, bankfull, alluvial boundaries, sediment, geomorphic assessment, non-point source pollution, Bank Erosion Hazard Index
52330
Play Button
Visualization of Streptococcus pneumoniae within Cardiac Microlesions and Subsequent Cardiac Remodeling
Authors: Armand O. Brown, Carlos J. Orihuela.
Institutions: The University of Texas Health Science Center at San Antonio.
During bacteremia Streptococcus pneumoniae can translocate across the vascular endothelium into the myocardium and form discrete bacteria-filled microscopic lesions (microlesions) that are remarkable due to the absence of infiltrating immune cells. Due to their release of cardiotoxic products, S. pneumoniae within microlesions are thought to contribute to the heart failure that is frequently observed during fulminate invasive pneumococcal disease in adults. Herein is demonstrated a protocol for experimental mouse infection that leads to reproducible cardiac microlesion formation within 30 hr. Instruction is provided on microlesion identification in hematoxylin & eosin stained heart sections and the morphological distinctions between early and late microlesions are highlighted. Instruction is provided on a protocol for verification of S. pneumoniae within microlesions using antibodies against pneumococcal capsular polysaccharide and immunofluorescent microscopy. Last, a protocol for antibiotic intervention that rescues infected mice and for the detection and assessment of scar formation in the hearts of convalescent mice is provided. Together, these protocols will facilitate the investigation of the molecular mechanisms underlying pneumococcal cardiac invasion, cardiomyocyte death, cardiac remodeling as a result of exposure to S. pneumoniae, and the immune response to the pneumococci in the heart.
Medicine, Issue 98, Streptococcus pneumoniae, pneumonia, bacteremia, heart failure, invasion, cardiac microlesion, abscess, fluorescent microscopy
52590
Play Button
Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task
Authors: Barbara Sargent, Hendrik Reimann, Masayoshi Kubo, Linda Fetters.
Institutions: University of Southern California, Temple University, Niigata University of Health and Welfare.
Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants’ leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.
Behavior, Issue 100, infant, discovery-learning, motor learning, motor control, kinematics, kinetics
52841
Play Button
Investigating the Microbial Community in the Termite Hindgut - Interview
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter explains why the termite-gut microbial community is an excellent system for studying the complex interactions between microbes. The symbiotic relationship existing between the host insect and lignocellulose-degrading gut microbes is explained, as well as the industrial uses of these microbes for degrading plant biomass and generating biofuels.
Microbiology, issue 4, microbial community, diversity
196
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
50961
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
197
Play Button
Microbial Communities in Nature and Laboratory - Interview
Authors: Edward F. DeLong.
Institutions: MIT - Massachusetts Institute of Technology.
Microbiology, issue 4, microbial community, biofilm, genome
202
Play Button
Studies of Bacterial Chemotaxis Using Microfluidics - Interview
Authors: Roman Stocker.
Institutions: MIT - Massachusetts Institute of Technology.
Microbiology, issue 4, microbial community, chemotaxis, microfluidics
204
Play Button
Biology of Microbial Communities - Interview
Authors: Roberto Kolter.
Institutions: Harvard Medical School.
Microbiology, issue 4, microbial community, DNA, extraction, gut, termit
205
Play Button
Vibrio cholerae: Model Organism to Study Bacterial Pathogenesis - Interview
Authors: Fitnat Yildiz.
Institutions: University of California Santa Cruz - UCSC.
Microbiology, issue 4, microbial community, Vibrio cholerae, genome
207
Play Button
Mouse Complete Stasis Model of Inferior Vena Cava Thrombosis
Authors: Shirley K. Wrobleski, Diana M. Farris, José A. Diaz, Daniel D. Myers Jr., Thomas W. Wakefield.
Institutions: University of Michigan .
Venous thromboembolism (VTE) includes both deep vein thrombosis (DVT) and pulmonary embolism (PE). In the United States (U.S.), the high morbidity and mortality rates make VTE a serious health concern 1-2. After heart disease and stroke, VTE is the third most common vascular disease 3. In the U.S. alone, there is an estimated 900,000 people affected each year, with 300,000 deaths occurring annually 3. A reliable in vivo animal model to study the mechanisms of this disease is necessary. The advantages of using the mouse complete stasis model of inferior vena cava thrombosis are several. The mouse model allows for the administration of very small volumes of limited availability test agents, reducing costs dramatically. Most promising is the potential for mice with gene knockouts that allow specific inflammatory and coagulation factor functions to be delineated. Current molecular assays allow for the quantitation of vein wall, thrombus, whole blood, and plasma for assays. However, a major concern involving this model is the operative size constraints and the friability of the vessels. Also, due to the small IVC sample weight (mean 0.005 grams) it is necessary to increase animal numbers for accurate statistical analysis for tissue, thrombus, and blood assays such as real-time polymerase chain reaction (RT-PCR), western blot, enzyme-linked immunosorbent (ELISA), zymography, vein wall and thrombus cellular analysis, and whole blood and plasma assays 4-8. The major disadvantage with the stasis model is that the lack of blood flow inhibits the maximal effect of administered systemic therapeutic agents on the thrombus and vein wall.
Medicine, Issue 52, Animal model, mouse, venous thrombosis, stasis induced thrombosis, inflammation, venous disease
2738
Play Button
Measurement of Lifespan in Drosophila melanogaster
Authors: Nancy J. Linford, Ceyda Bilgir, Jennifer Ro, Scott D. Pletcher.
Institutions: University of Michigan , University of Michigan .
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.
Developmental Biology, Issue 71, Cellular Biology, Molecular Biology, Anatomy, Physiology, Entomology, longevity, lifespan, aging, Drosophila melanogaster, fruit fly, Drosophila, mortality, animal model
50068
Play Button
Characterization of Inflammatory Responses During Intranasal Colonization with Streptococcus pneumoniae
Authors: Alicja Puchta, Chris P. Verschoor, Tanja Thurn, Dawn M. E. Bowdish.
Institutions: McMaster University .
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite to invasion to the lungs or bloodstream1. This organism is capable of colonizing the mucosal surface of the nasopharynx, where it can reside, multiply and eventually overcome host defences to invade to other tissues of the host. Establishment of an infection in the normally lower respiratory tract results in pneumonia. Alternatively, the bacteria can disseminate into the bloodstream causing bacteraemia, which is associated with high mortality rates2, or else lead directly to the development of pneumococcal meningitis. Understanding the kinetics of, and immune responses to, nasopharyngeal colonization is an important aspect of S. pneumoniae infection models. Our mouse model of intranasal colonization is adapted from human models3 and has been used by multiple research groups in the study of host-pathogen responses in the nasopharynx4-7. In the first part of the model, we use a clinical isolate of S. pneumoniae to establish a self-limiting bacterial colonization that is similar to carriage events in human adults. The procedure detailed herein involves preparation of a bacterial inoculum, followed by the establishment of a colonization event through delivery of the inoculum via an intranasal route of administration. Resident macrophages are the predominant cell type in the nasopharynx during the steady state. Typically, there are few lymphocytes present in uninfected mice8, however mucosal colonization will lead to low- to high-grade inflammation (depending on the virulence of the bacterial species and strain) that will result in an immune response and the subsequent recruitment of host immune cells. These cells can be isolated by a lavage of the tracheal contents through the nares, and correlated to the density of colonization bacteria to better understand the kinetics of the infection.
Immunology, Issue 83, Streptococcus pneumoniae, Nasal lavage, nasopharynx, murine, flow cytometry, RNA, Quantitative PCR, recruited macrophages, neutrophils, T-cells, effector cells, intranasal colonization
50490
Play Button
Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers
Authors: Nancy A. Hodgson, Douglas A. Granger.
Institutions: Johns Hopkins University School of Nursing, Arizona State University, Johns Hopkins University School of Nursing, Johns Hopkins University Bloomberg School of Public Health.
Salivary measures have emerged in bio-behavioral research that are easy-to-collect, minimally invasive, and relatively inexpensive biologic markers of stress. This article we present the steps for collection and analysis of two salivary assays in research with frail, community residing older adults-salivary cortisol and salivary alpha amylase. The field of salivary bioscience is rapidly advancing and the purpose of this presentation is to provide an update on the developments for investigators interested in integrating these measures into research on aging. Strategies are presented for instructing family caregivers in collecting saliva in the home, and for conducting laboratory analyses of salivary analytes that have demonstrated feasibility, high compliance, and yield quality specimens. The protocol for sample collection includes: (1) consistent use of collection materials; (2) standardized methods that promote adherence and minimize subject burden; and (3) procedures for controlling certain confounding agents. We also provide strategies for laboratory analyses include: (1) saliva handling and processing; (2) salivary cortisol and salivary alpha amylase assay procedures; and (3) analytic considerations.
Medicine, Issue 82, Saliva, Dementia, Behavioral Research, Aging, Stress, saliva, cortisol, alpha amylase, dementia, caregiving, stress
50815
Play Button
Establishment and Characterization of UTI and CAUTI in a Mouse Model
Authors: Matt S. Conover, Ana L. Flores-Mireles, Michael E. Hibbing, Karen Dodson, Scott J. Hultgren.
Institutions: Washington University School of Medicine.
Urinary tract infections (UTI) are highly prevalent, a significant cause of morbidity and are increasingly resistant to treatment with antibiotics. Females are disproportionately afflicted by UTI: 50% of all women will have a UTI in their lifetime. Additionally, 20-40% of these women who have an initial UTI will suffer a recurrence with some suffering frequent recurrences with serious deterioration in the quality of life, pain and discomfort, disruption of daily activities, increased healthcare costs, and few treatment options other than long-term antibiotic prophylaxis. Uropathogenic Escherichia coli (UPEC) is the primary causative agent of community acquired UTI. Catheter-associated UTI (CAUTI) is the most common hospital acquired infection accounting for a million occurrences in the US annually and dramatic healthcare costs. While UPEC is also the primary cause of CAUTI, other causative agents are of increased significance including Enterococcus faecalis. Here we utilize two well-established mouse models that recapitulate many of the clinical characteristics of these human diseases. For UTI, a C3H/HeN model recapitulates many of the features of UPEC virulence observed in humans including host responses, IBC formation and filamentation. For CAUTI, a model using C57BL/6 mice, which retain catheter bladder implants, has been shown to be susceptible to E. faecalis bladder infection. These representative models are being used to gain striking new insights into the pathogenesis of UTI disease, which is leading to the development of novel therapeutics and management or prevention strategies.
Medicine, Issue 100, Escherichia coli, UPEC, Enterococcus faecalis, uropathogenic, catheter, urinary tract infection, IBC, chronic cystitis
52892
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.