JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Hyperthermia Induces Apoptosis of 786-O Cells through Suppressing Ku80 Expression.
PUBLISHED: 04-23-2015
Hyperthermia as an anticancer method has been paid increasing attention in recent years. Several studies have shown that hyperthermia can kill tumor cells by inducing apoptosis. However, the underlying molecular mechanisms of hyperthermia-induced apoptosis are largely unknown. To investigate the effects and molecular mechanism of hyperthermia on the apoptosis in renal carcinoma 786-O cells, we firstly examined apoptosis and Ku expression in 786-O cell line treated with heat exposure (42°C for 0-4 h). The results showed that hyperthermia induced apoptosis of 786-O cells, and suppressed significantly Ku80 expression, but not Ku70 expression. Next, we knock-down Ku80 in 786-O cells, generating stable cell line 786-O-shKu80, and detected apoptosis, cell survival and cell cycle distribution. Our data showed higher apoptotic rate and lower surviving fraction in the stable cell line 786-O-shKu80 compared with those in control cells, exposed to the same heat stress (42°C for 0-4 h). Moreover, the results also showed suppression of Ku80 led to G2/M phase arrest in the stable cell line 786-O-shKu80 following heat treatment. Together, these findings indicate that Ku80 may play an important role in hyperthermia-induced apoptosis and heat-sensitivity of renal carcinoma cells through influencing the cell cycle distribution.
Sublethal ischemia protects tissues against subsequent, more severe ischemia through the upregulation of endogenous mechanisms in the affected tissue. Sublethal ischemia has also been shown to upregulate protective mechanisms in remote tissues. A brief period of ischemia (5-10 min) in the hind limb of mammals induces self-protective responses in the brain, lung, heart and retina. The effect is known as remote ischemic preconditioning (RIP). It is a therapeutically promising way of protecting vital organs, and is already under clinical trials for heart and brain injuries. This publication demonstrates a controlled, minimally invasive method of making a limb – specifically the hind limb of a rat – ischemic. A blood pressure cuff developed for use in human neonates is connected to a manual sphygmomanometer and used to apply 160 mmHg pressure around the upper part of the hind limb. A probe designed to detect skin temperature is used to verify the ischemia, by recording the drop in skin temperature caused by pressure-induced occlusion of the leg arteries, and the rise in temperature which follows release of the cuff. This method of RIP affords protection to the rat retina against bright light-induced damage and degeneration.
19 Related JoVE Articles!
Play Button
A Microfluidic Device with Groove Patterns for Studying Cellular Behavior
Authors: Bong Geun Chung, Amir Manbachi, Ali Khademhosseini.
Institutions: Brigham and Women's Hospital.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 μm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37°C, 5% CO2). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.
Issue 7, Cell Biology, tissue engineering, microfluidic, apoptosis
Play Button
Protocols for Assessing Radiofrequency Interactions with Gold Nanoparticles and Biological Systems for Non-invasive Hyperthermia Cancer Therapy
Authors: Stuart J. Corr, Brandon T. Cisneros, Leila Green, Mustafa Raoof, Steven A. Curley.
Institutions: University of Texas M.D. Anderson Cancer Center, Rice University , Rice University .
Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis. In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.
Medicine, Issue 78, Electronics and Electrical Engineering, Life Sciences (General), Radiofrequency, Cancer, Nanoparticles, Hyperthermia, Gold
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
A Novel in vivo Gene Transfer Technique and in vitro Cell Based Assays for the Study of Bone Loss in Musculoskeletal Disorders
Authors: Dennis J. Wu, Neha Dixit, Erika Suzuki, Thanh Nguyen, Hyun Seock Shin, Jack Davis, Emanual Maverakis, Iannis E. Adamopoulos.
Institutions: University of California, Davis, Shriners Hospitals for Children - Northern California, University of California, Davis.
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
Medicine, Issue 88, osteoclast, arthritis, minicircle DNA, macrophages, cell culture, hydrodynamic delivery
Play Button
Strategies for Tracking Anastasis, A Cell Survival Phenomenon that Reverses Apoptosis
Authors: Ho Lam Tang, Ho Man Tang, J. Marie Hardwick, Ming Chiu Fung.
Institutions: Johns Hopkins University Bloomberg School of Public Health, Chinese University of Hong Kong, Johns Hopkins University School of Medicine.
Anastasis (Greek for “rising to life”) refers to the recovery of dying cells. Before these cells recover, they have passed through important checkpoints of apoptosis, including mitochondrial fragmentation, release of mitochondrial cytochrome c into the cytosol, activation of caspases, chromatin condensation, DNA damage, nuclear fragmentation, plasma membrane blebbing, cell shrinkage, cell surface exposure of phosphatidylserine, and formation of apoptotic bodies. Anastasis can occur when apoptotic stimuli are removed prior to death, thereby allowing dying cells to reverse apoptosis and potentially other death mechanisms. Therefore, anastasis appears to involve physiological healing processes that could also sustain damaged cells inappropriately. The functions and mechanisms of anastasis are still unclear, hampered in part by the limited tools for detecting past events after the recovery of apparently healthy cells. Strategies to detect anastasis will enable studies of the physiological mechanisms, the hazards of undead cells in disease pathology, and potential therapeutics to modulate anastasis. Here, we describe effective strategies using live cell microscopy and a mammalian caspase biosensor for identifying and tracking anastasis in mammalian cells.
Cellular Biology, Issue 96, Anastasis, apoptosis, apoptotic bodies, caspase, cell death, cell shrinkage, cell suicide, cytochrome c, DNA damage, genetic alterations, mitochondrial outer membrane permeabilization (MOMP), programmed cell death, reversal of apoptosis
Play Button
Ex Vivo Treatment Response of Primary Tumors and/or Associated Metastases for Preclinical and Clinical Development of Therapeutics
Authors: Adriana D. Corben, Mohammad M. Uddin, Brooke Crawford, Mohammad Farooq, Shanu Modi, John Gerecitano, Gabriela Chiosis, Mary L. Alpaugh.
Institutions: Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center.
The molecular analysis of established cancer cell lines has been the mainstay of cancer research for the past several decades. Cell culture provides both direct and rapid analysis of therapeutic sensitivity and resistance. However, recent evidence suggests that therapeutic response is not exclusive to the inherent molecular composition of cancer cells but rather is greatly influenced by the tumor cell microenvironment, a feature that cannot be recapitulated by traditional culturing methods. Even implementation of tumor xenografts, though providing a wealth of information on drug delivery/efficacy, cannot capture the tumor cell/microenvironment crosstalk (i.e., soluble factors) that occurs within human tumors and greatly impacts tumor response. To this extent, we have developed an ex vivo (fresh tissue sectioning) technique which allows for the direct assessment of treatment response for preclinical and clinical therapeutics development. This technique maintains tissue integrity and cellular architecture within the tumor cell/microenvironment context throughout treatment response providing a more precise means to assess drug efficacy.
Cancer Biology, Issue 92, Ex vivo sectioning, Treatment response, Sensitivity/Resistance, Drug development, Patient tumors, Preclinical and Clinical
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
Play Button
Live Imaging of Apoptotic Cell Clearance during Drosophila Embryogenesis
Authors: Boris Shklyar, Jeny Shklover, Estee Kurant.
Institutions: Technion-Israel Institute of Technology.
The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare 'professional' phagocytes - macrophages and dendritic cells to 'non-professional' - tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: 'professional' macrophages and 'semi-professional' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance.
Developmental Biology, Issue 78, Cellular Biology, Molecular Biology, Genetics, Bioengineering, Drosophila, Immunity, Innate, Phagocytosis, Apoptosis, Genes, Developmental, Cell Biology, biology (general), genetics (animal and plant), life sciences, embryo, glia, fruit fly, animal model
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
Finger-stick Blood Sampling Methodology for the Determination of Exercise-induced Lymphocyte Apoptosis
Authors: James Navalta, Brian McFarlin, Richard Simpson, Elizabeth Fedor, Holly Kell, Scott Lyons, Scott Arnett, Mark Schafer.
Institutions: Western Kentucky University, University of Houston.
Exercise is a physiological stimulus capable of inducing apoptosis in immune cells. To date, various limitations have been identified with the measurement of this phenomenon, particularly relating to the amount of time required to isolate and treat a blood sample prior to the assessment of cell death. Because of this, it is difficult to determine whether reported increases in immune cell apoptosis can be contributed to the actual effect of exercise on the system, or are a reflection of the time and processing necessary to eventually obtain this measurement. In this article we demonstrate a rapid and minimally invasive procedure for the analysis of exercise-induced lymphocyte apoptosis. Unlike other techniques, whole blood is added to an antibody panel immediately upon obtaining a sample. Following the incubation period, red blood cells are lysed and samples are ready to be analyzed. The use of a finger-stick sampling procedure reduces the volume of blood required, and minimizes the discomfort to subjects.
Immunology, Issue 48, Leukocyte phenotyping, programmed cell death, muscular activity, technique development
Play Button
Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death
Authors: Aja M. Rieger, Kimberly L. Nelson, Jeffrey D. Konowalchuk, Daniel R. Barreda.
Institutions: University of Alberta, University of Alberta.
Studies of cellular apoptosis have been significantly impacted since the introduction of flow cytometry-based methods. Propidium iodide (PI) is widely used in conjunction with Annexin V to determine if cells are viable, apoptotic, or necrotic through differences in plasma membrane integrity and permeability1,2. The Annexin V/ PI protocol is a commonly used approach for studying apoptotic cells3. PI is used more often than other nuclear stains because it is economical, stable and a good indicator of cell viability, based on its capacity to exclude dye in living cells 4,5. The ability of PI to enter a cell is dependent upon the permeability of the membrane; PI does not stain live or early apoptotic cells due to the presence of an intact plasma membrane 1,2,6. In late apoptotic and necrotic cells, the integrity of the plasma and nuclear membranes decreases7,8, allowing PI to pass through the membranes, intercalate into nucleic acids, and display red fluorescence 1,2,9. Unfortunately, we find that conventional Annexin V/ PI protocols lead to a significant number of false positive events (up to 40%), which are associated with PI staining of RNA within the cytoplasmic compartment10. Primary cells and cell lines in a broad range of animal models are affected, with large cells (nuclear: cytoplasmic ratios <0.5) showing the highest occurrence10. Herein, we demonstrate a modified Annexin V/ PI method that provides a significant improvement for assessment of cell death compared to conventional methods. This protocol takes advantage of changes in cellular permeability during cell fixing to promote entry of RNase A into cells following staining. Both the timing and concentration of RNase A have been optimized for removal of cytoplasmic RNA. The result is a significant improvement over conventional Annexin V/ PI protocols (< 5% events with cytoplasmic PI staining).
Cellular Biology, Issue 50, Apoptosis, cell death, propidium iodide, Annexin V, necrosis, immunology
Play Button
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Authors: Zhongshu Tang, Shuihua Zhang, Chunsik Lee, Anil Kumar, Pachiappan Arjunan, Yang Li, Fan Zhang, Xuri Li.
Institutions: NIH, The Second Hospital of Harbin Medical University.
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result.
Neuroscience, Issue 50, optic nerve crush injury, retinal ganglion cell, glaucoma, optic neuropathy, retrograde labeling
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
Play Button
Protocol for Long Duration Whole Body Hyperthermia in Mice
Authors: Vikas Duhan, Neha Joshi, P. Nagarajan, Pramod Upadhyay.
Institutions: National Institute of Immunology, National Institute of Immunology.
Hyperthermia is a general term used to define the increase in core body temperature above normal. It is often used to describe the increased core body temperature that is observed during fever. The use of hyperthermia as an adjuvant has emerged as a promising procedure for tumor regression in the field of cancer biology. For this purpose, the most important requirement is to have reliable and uniform heating protocols. We have developed a protocol for hyperthermia (whole body) in mice. In this protocol, animals are exposed to cycles of hyperthermia for 90 min followed by a rest period of 15 min. During this period mice have easy access to food and water. High body temperature spikes in the mice during first few hyperthermia exposure cycles are prevented by immobilizing the animal. Additionally, normal saline is administered in first few cycles to minimize the effects of dehydration. This protocol can simulate fever like conditions in mice up to 12-24 hr. We have used 8-12 weeks old BALB/Cj female mice to demonstrate the protocol.
Medicine, Issue 66, Anatomy, Physiology, Mouse, Fever, Whole Body Hyperthermia, Temperature Spikes, core body temperature
Play Button
A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain
Authors: John F. Bowyer, Monzy Thomas, Tucker A. Patterson, Nysia I. George, Jeffrey A. Runnells, Mark S. Levi.
Institutions: National Center for Toxicological Research, National Center for Toxicological Research, National Center for Toxicological Research.
This video presentation was created to show a method of harvesting the two most important highly vascular structures, not residing within the brain proper, that support forebrain function. They are the cerebral surface (superficial) vasculature along with associated meninges (MAV) and the choroid plexus which are necessary for cerebral blood flow and cerebrospinal fluid (CSF) homeostasis. The tissue harvested is suitable for biochemical and physiological analysis, and the MAV has been shown to be sensitive to damage produced by amphetamine and hyperthermia 1,2. As well, the major and minor cerebral vasculatures harvested in MAV are of potentially high interest when investigating concussive types of head trauma. The MAV dissected in this presentation consists of the pial and some of the arachnoid membrane (less dura) of the meninges and the major and minor cerebral surface vasculature. The choroid plexus dissected is the structure that resides in the lateral ventricles as described by Oldfield and McKinley3,4,5,6. The methods used for harvesting these two tissues also facilitate the harvesting of regional cortical tissue devoid of meninges and larger cerebral surface vasculature, and is compatible with harvesting other brain tissues such as striatum, hypothalamus, hippocampus, etc. The dissection of the two tissues takes from 5 to 10 min total. The gene expression levels for the dissected MAV and choroid plexus, as shown and described in this presentation can be found at GSE23093 (MAV) and GSE29733 (choroid plexus) at the NCBI GEO repository. This data has been, and is being, used to help further understand the functioning of the MAV and choroid plexus and how neurotoxic events such as severe hyperthermia and AMPH adversely affect their function.
Neuroscience, Issue 69, Medicine, Anatomy, Physiology, Toxicology, brain, dissection, choroid plexus, meninges and associated vasculature
Play Button
Preparation of Cell-lines for Conditional Knockdown of Gene Expression and Measurement of the Knockdown Effects on E4orf4-Induced Cell Death
Authors: Anna Brestovitsky, Rakefet Sharf, Tamar Kleinberger.
Institutions: Technion - Israel Institute of Technology.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9. The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.
Genetics, Issue 68, Cellular Biology, Molecular Biology, Microbiology, Medicine, Cell death, adenovirus, E4orf4, DAPI assay, conditional knockdown, shRNA
Play Button
Applying an Inducible Expression System to Study Interference of Bacterial Virulence Factors with Intracellular Signaling
Authors: Christian Berens, Stephanie Bisle, Leonie Klingenbeck, Anja Lührmann.
Institutions: Friedrich-Alexander-Universität, Friedrich-Loeffler-Institut, Universitätsklinikum Erlangen.
The technique presented here allows one to analyze at which step a target protein, or alternatively a small molecule, interacts with the components of a signaling pathway. The method is based, on the one hand, on the inducible expression of a specific protein to initiate a signaling event at a defined and predetermined step in the selected signaling cascade. Concomitant expression, on the other hand, of the gene of interest then allows the investigator to evaluate if the activity of the expressed target protein is located upstream or downstream of the initiated signaling event, depending on the readout of the signaling pathway that is obtained. Here, the apoptotic cascade was selected as a defined signaling pathway to demonstrate protocol functionality. Pathogenic bacteria, such as Coxiella burnetii, translocate effector proteins that interfere with host cell death induction in the host cell to ensure bacterial survival in the cell and to promote their dissemination in the organism. The C. burnetii effector protein CaeB effectively inhibits host cell death after induction of apoptosis with UV-light or with staurosporine. To narrow down at which step CaeB interferes with the propagation of the apoptotic signal, selected proteins with well-characterized pro-apoptotic activity were expressed transiently in a doxycycline-inducible manner. If CaeB acts upstream of these proteins, apoptosis will proceed unhindered. If CaeB acts downstream, cell death will be inhibited. The test proteins selected were Bax, which acts at the level of the mitochondria, and caspase 3, which is the major executioner protease. CaeB interferes with cell death induced by Bax expression, but not by caspase 3 expression. CaeB, thus, interacts with the apoptotic cascade between these two proteins.
Infection, Issue 100, Apoptosis, Bax, Caspase 3, Coxiella burnetii, Doxycycline, Effector protein, Inducible expression, stable cell line, Tet system, Type IV Secretion System
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.