JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
A Longitudinal Investigation of the Relationship between Posttraumatic Stress Symptoms and Posttraumatic Growth in a Cohort of Israeli Jews and Palestinians during Ongoing Violence.
PUBLISHED: 04-27-2015
Meta-analytic evidence based on cross-sectional investigations between posttraumatic growth (PTG) and posttraumatic stress disorder (PTSD) demonstrates that the two concepts are positively related and that ethnic minorities report greater PTG. Few longitudinal studies have quantified this relationship so the evidence is limited regarding the potential benefit PTG may have on post-traumatic adjustment and whether differences between ethnic groups exist.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
19 Related JoVE Articles!
Play Button
Biomarkers in an Animal Model for Revealing Neural, Hematologic, and Behavioral Correlates of PTSD
Authors: Min Jia, Fei Meng, Stanley E. Smerin, Guoqiang Xing, Lei Zhang, David M. Su, David Benedek, Robert Ursano, Yan A. Su, He Li.
Institutions: Uniformed Services University of the Health Sciences, Bethesda, Maryland, GenProMarkers, Inc..
Identification of biomarkers representing the evolution of the pathophysiology of Post Traumatic Stress Disorder (PTSD) is vitally important, not only for objective diagnosis but also for the evaluation of therapeutic efficacy and resilience to trauma. Ongoing research is directed at identifying molecular biomarkers for PTSD, including traumatic stress induced proteins, transcriptomes, genomic variances and genetic modulators, using biologic samples from subjects' blood, saliva, urine, and postmortem brain tissues. However, the correlation of these biomarker molecules in peripheral or postmortem samples to altered brain functions associated with psychiatric symptoms in PTSD remains unresolved. Here, we present an animal model of PTSD in which both peripheral blood and central brain biomarkers, as well as behavioral phenotype, can be collected and measured, thus providing the needed correlation of the central biomarkers of PTSD, which are mechanistic and pathognomonic but cannot be collected from people, with the peripheral biomarkers and behavioral phenotypes, which can. Our animal model of PTSD employs restraint and tail shocks repeated for three continuous days - the inescapable tail-shock model (ITS) in rats. This ITS model mimics the pathophysiology of PTSD 17, 7, 4, 10. We and others have verified that the ITS model induces behavioral and neurobiological alterations similar to those found in PTSD subjects 17, 7, 10, 9. Specifically, these stressed rats exhibit (1) a delayed and exaggerated startle response appearing several days after stressor cessation, which given the compressed time scale of the rat's life compared to a humans, corresponds to the one to three months delay of symptoms in PTSD patients (DSM-IV-TR PTSD Criterian D/E 13), (2) enhanced plasma corticosterone (CORT) for several days, indicating compromise of the hypothalamopituitary axis (HPA), and (3) retarded body weight gain after stressor cessation, indicating dysfunction of metabolic regulation. The experimental paradigms employed for this model are: (1) a learned helplessness paradigm in the rat assayed by measurement of acoustic startle response (ASR) and a charting of body mass; (2) microdissection of the rat brain into regions and nuclei; (3) enzyme-linked immunosorbent assay (ELISA) for blood levels of CORT; (4) a gene expression microarray plus related bioinformatics tools 18. This microarray, dubbed rMNChip, focuses on mitochondrial and mitochondria-related nuclear genes in the rat so as to specifically address the neuronal bioenergetics hypothesized to be involved in PTSD.
Medicine, Issue 68, Genetics, Physiology, Neuroscience, Immunology, PTSD, biomarker, stress, fear, startle, corticosterone, animal model, RNA, RT-PCR, gene chip, cDNA microarray, oligonucleotide microarray, amygdala, prefrontal cortex, hippocampus, cingulate cortex, hypothalamus, white blood cell
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Protocol for Studying Extinction of Conditioned Fear in Naturally Cycling Female Rats
Authors: Lisa Y. Maeng, Kara K. Cover, Aaron J. Landau, Mohammed R. Milad, Kelimer Lebron-Milad.
Institutions: Massachusetts General Hospital, Harvard Medical School.
Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females.
Behavior, Issue 96, estrogen, fear extinction, sex differences, estradiol, proestrus, metestrus, female, PTSD, anxiety
Play Button
Surgical Fixation of Sternal Fractures: Preoperative Planning and a Safe Surgical Technique Using Locked Titanium Plates and Depth Limited Drilling
Authors: Stefan Schulz-Drost, Pascal Oppel, Sina Grupp, Sonja Schmitt, Roman Th. Carbon, Andreas Mauerer, Friedrich F. Hennig, Thomas Buder.
Institutions: University Hospital Erlangen, University Hospital Erlangen, St.-Theresien Hospital, University Erlangen-Nuremberg.
Different ways to stabilize a sternal fracture are described in literature. Respecting different mechanisms of trauma such as the direct impact to the anterior chest wall or the flexion-compression injury of the trunk, there is a need to retain each sternal fragment in the correct position while neutralizing shearing forces to the sternum. Anterior sternal plating provides the best stability and is therefore increasingly used in most cases. However, many surgeons are reluctant to perform sternal osteosynthesis due to possible complications such as difficulties in preoperative planning, severe injuries to mediastinal organs, or failure of the performed method. This manuscript describes one possible safe way to stabilize different types of sternal fractures in a step by step guidance for anterior sternal plating using low profile locking titanium plates. Before surgical treatment, a detailed survey of the patient and a three dimensional reconstructed computed tomography is taken out to get detailed information of the fracture’s morphology. The surgical approach is usually a midline incision. Its position can be described by measuring the distance from upper sternal edge to the fracture and its length can be approximated by the summation of 60 mm for the basis incision, the thickness of presternal soft tissue and the greatest distance between the fragments in case of multiple fractures. Performing subperiosteal dissection along the sternum while reducing the fracture, using depth limited drilling, and fixing the plates prevents injuries to mediastinal organs and vessels. Transverse fractures and oblique fractures at the corpus sterni are plated longitudinally, whereas oblique fractures of manubrium, sternocostal separation and any longitudinally fracture needs to be stabilized by a transverse plate from rib to sternum to rib. Usually the high convenience of a patient is seen during follow up as well as a precise reconstruction of the sternal morphology.
Medicine, Issue 95, Sternal fracture, sternum fracture, locked plate, low profile plate, MatrixRib, depth limited drilling, surgical procedure, preoperative CT planning
Play Button
Disrupting Reconsolidation of Fear Memory in Humans by a Noradrenergic β-Blocker
Authors: Merel Kindt, Marieke Soeter, Dieuwke Sevenster.
Institutions: University of Amsterdam.
The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.
Behavior, Issue 94, Fear memory, reconsolidation, noradrenergic β-blocker, human fear conditioning, startle potentiation, translational research.
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Play Button
Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging
Authors: Mikhail Paveliev, Mikhail Kislin, Dmitry Molotkov, Mikhail Yuryev, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki.
Although acute brain trauma often results from head damage in different accidents and affects a substantial fraction of the population, there is no effective treatment for it yet. Limitations of currently used animal models impede understanding of the pathology mechanism. Multiphoton microscopy allows studying cells and tissues within intact animal brains longitudinally under physiological and pathological conditions. Here, we describe two models of acute brain injury studied by means of two-photon imaging of brain cell behavior under posttraumatic conditions. A selected brain region is injured with a sharp needle to produce a trauma of a controlled width and depth in the brain parenchyma. Our method uses stereotaxic prick with a syringe needle, which can be combined with simultaneous drug application. We propose that this method can be used as an advanced tool to study cellular mechanisms of pathophysiological consequences of acute trauma in mammalian brain in vivo. In this video, we combine acute brain injury with two preparations: cranial window and skull thinning. We also discuss advantages and limitations of both preparations for multisession imaging of brain regeneration after trauma.
Medicine, Issue 86, Trauma, Nervous System, animal models, Brain trauma, in vivo multiphoton microscopy, dendrite, astrocyte, microglia, second harmonic generation.
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Preparing Undercut Model of Posttraumatic Epileptogenesis in Rodents
Authors: Wenhui Xiong, Xingjie Ping, Jianhua Gao, Xiaoming Jin.
Institutions: Indiana University School of Medicine.
Partially isolated cortex ("undercut") is an animal model of posttraumatic epileptogenesis. The surgical procedure involves cutting through the sensorimotor cortex and the underneath white matter (undercut) so that a specific region of the cerebral cortex is largely isolated from the neighboring cortex and subcortical regions1-3. After a latency of two or more weeks following the surgery, epileptiform discharges can be recorded in brain slices from rodents1; and electrical or behavior seizures can be observed in vivo from other species such as cat and monkey4-6. This well established animal model is efficient to generate and mimics several important characteristics of traumatic brain injury. However, it is technically challenging attempting to make precise cortical lesions in the small rodent brain with a free hand. Based on the procedure initially established in Dr. David Prince's lab at the Stanford University1, here we present an improved technique to perform a surgery for the preparation of this model in mice and rats. We demonstrate how to make a simple surgical device and use it to gain a better control of cutting depth and angle to generate more precise and consistent results. The device is easy to make, and the procedure is quick to learn. The generation of this animal model provides an efficient system for study on the mechanisms of posttraumatic epileptogenesis.
Neuroscience, Issue 55, epilepsy, traumatic brain injury, brain, mouse, rat, surgery
Play Button
Brain Imaging Investigation of the Impairing Effect of Emotion on Cognition
Authors: Gloria Wong, Sanda Dolcos, Ekaterina Denkova, Rajendra Morey, Lihong Wang, Gregory McCarthy, Florin Dolcos.
Institutions: University of Alberta, University of Alberta, University of Illinois, Duke University , Duke University , VA Medical Center, Yale University, University of Illinois, University of Illinois.
Emotions can impact cognition by exerting both enhancing (e.g., better memory for emotional events) and impairing (e.g., increased emotional distractibility) effects (reviewed in 1). Complementing our recent protocol 2 describing a method that allows investigation of the neural correlates of the memory-enhancing effect of emotion (see also 1, 3-5), here we present a protocol that allows investigation of the neural correlates of the detrimental impact of emotion on cognition. The main feature of this method is that it allows identification of reciprocal modulations between activity in a ventral neural system, involved in 'hot' emotion processing (HotEmo system), and a dorsal system, involved in higher-level 'cold' cognitive/executive processing (ColdEx system), which are linked to cognitive performance and to individual variations in behavior (reviewed in 1). Since its initial introduction 6, this design has proven particularly versatile and influential in the elucidation of various aspects concerning the neural correlates of the detrimental impact of emotional distraction on cognition, with a focus on working memory (WM), and of coping with such distraction 7,11, in both healthy 8-11 and clinical participants 12-14.
Neuroscience, Issue 60, Emotion-Cognition Interaction, Cognitive/Emotional Interference, Task-Irrelevant Distraction, Neuroimaging, fMRI, MRI
Play Button
Brain Imaging Investigation of the Memory-Enhancing Effect of Emotion
Authors: Andrea Shafer, Alexandru Iordan, Roberto Cabeza, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, Urbana-Champaign, Duke University, University of Illinois, Urbana-Champaign.
Emotional events tend to be better remembered than non-emotional events1,2. One goal of cognitive and affective neuroscientists is to understand the neural mechanisms underlying this enhancing effect of emotion on memory. A method that has proven particularly influential in the investigation of the memory-enhancing effect of emotion is the so-called subsequent memory paradigm (SMP). This method was originally used to investigate the neural correlates of non-emotional memories3, and more recently we and others also applied it successfully to studies of emotional memory (reviewed in4, 5-7). Here, we describe a protocol that allows investigation of the neural correlates of the memory-enhancing effect of emotion using the SMP in conjunction with event-related functional magnetic resonance imaging (fMRI). An important feature of the SMP is that it allows separation of brain activity specifically associated with memory from more general activity associated with perception. Moreover, in the context of investigating the impact of emotional stimuli, SMP allows identification of brain regions whose activity is susceptible to emotional modulation of both general/perceptual and memory-specific processing. This protocol can be used in healthy subjects8-15, as well as in clinical patients where there are alterations in the neural correlates of emotion perception and biases in remembering emotional events, such as those suffering from depression and post-traumatic stress disorder (PTSD)16, 17.
Neuroscience, Issue 51, Affect, Recognition, Recollection, Dm Effect, Neuroimaging
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotional Autobiographical Recollection
Authors: Ekaterina Denkova, Trisha Chakrabarty, Sanda Dolcos, Florin Dolcos.
Institutions: University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
Recollection of emotional autobiographical memories (AMs) is important to healthy cognitive and affective functioning 1 - remembering positive AMs is associated with increased personal well-being and self-esteem 2, whereas remembering and ruminating on negative AMs may lead to affective disorders 3. Although significant progress has been made in understanding the brain mechanisms underlying AM retrieval in general (reviewed in 4, 5), less is known about the effect of emotion on the subjective re-experience of AMs and the associated neural correlates. This is in part due to the fact that, unlike the investigations of the emotion effect on memory for laboratory-based microevents (reviewed in 6, 7-9), often times AM studies do not have a clear focus on the emotional aspects of remembering personal events (but see 10). Here, we present a protocol that allows investigation of the neural correlates of recollecting emotional AMs using functional magnetic resonance imaging (fMRI). Cues for these memories are collected prior to scanning by means of an autobiographical memory questionnaire (AMQ), therefore allowing for proper selection of emotional AMs based on their phenomenological properties (i.e., intensity, vividness, personal significance). This protocol can be used in healthy and clinical populations alike.
Neuroscience, Issue 54, Personal Memories, Retrieval Focus, Cognitive Distraction, Emotion Regulation, Neuroimaging
Play Button
Mindfulness in Motion (MIM): An Onsite Mindfulness Based Intervention (MBI) for Chronically High Stress Work Environments to Increase Resiliency and Work Engagement
Authors: Maryanna Klatt, Beth Steinberg, Anne-Marie Duchemin.
Institutions: The Ohio State University College of Medicine, Wexner Medical Center, The Ohio State University College of Medicine.
A pragmatic mindfulness intervention to benefit personnel working in chronically high-stress environments, delivered onsite during the workday, is timely and valuable to employee and employer alike. Mindfulness in Motion (MIM) is a Mindfulness Based Intervention (MBI) offered as a modified, less time intensive method (compared to Mindfulness-Based Stress Reduction), delivered onsite, during work, and intends to enable busy working adults to experience the benefits of mindfulness. It teaches mindful awareness principles, rehearses mindfulness as a group, emphasizes the use of gentle yoga stretches, and utilizes relaxing music in the background of both the group sessions and individual mindfulness practice. MIM is delivered in a group format, for 1 hr/week/8 weeks. CDs and a DVD are provided to facilitate individual practice. The yoga movement is emphasized in the protocol to facilitate a quieting of the mind. The music is included for participants to associate the relaxed state experienced in the group session with their individual practice. To determine the intervention feasibility/efficacy we conducted a randomized wait-list control group in Intensive Care Units (ICUs). ICUs represent a high-stress work environment where personnel experience chronic exposure to catastrophic situations as they care for seriously injured/ill patients. Despite high levels of work-related stress, few interventions have been developed and delivered onsite for such environments. The intervention is delivered on site in the ICU, during work hours, with participants receiving time release to attend sessions. The intervention is well received with 97% retention rate. Work engagement and resiliency increase significantly in the intervention group, compared to the wait-list control group, while participant respiration rates decrease significantly pre-post in 6/8 of the weekly sessions. Participants value institutional support, relaxing music, and the instructor as pivotal to program success. This provides evidence that MIM is feasible, well accepted, and can be effectively implemented in a chronically high-stress work environment.
Behavior, Issue 101, Mindfulness, resiliency, work-engagement, stress-reduction, workplace, non-reactivity, Intensive-care, chronic stress, work environment
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.