JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Health and economic impacts of eight different dietary salt reduction interventions.
PUBLISHED: 04-27-2015
Given the high importance of dietary sodium (salt) as a global disease risk factor, our objective was to compare the impact of eight sodium reduction interventions, including feasible and more theoretical ones, to assist prioritisation.
A pragmatic mindfulness intervention to benefit personnel working in chronically high-stress environments, delivered onsite during the workday, is timely and valuable to employee and employer alike. Mindfulness in Motion (MIM) is a Mindfulness Based Intervention (MBI) offered as a modified, less time intensive method (compared to Mindfulness-Based Stress Reduction), delivered onsite, during work, and intends to enable busy working adults to experience the benefits of mindfulness. It teaches mindful awareness principles, rehearses mindfulness as a group, emphasizes the use of gentle yoga stretches, and utilizes relaxing music in the background of both the group sessions and individual mindfulness practice. MIM is delivered in a group format, for 1 hr/week/8 weeks. CDs and a DVD are provided to facilitate individual practice. The yoga movement is emphasized in the protocol to facilitate a quieting of the mind. The music is included for participants to associate the relaxed state experienced in the group session with their individual practice. To determine the intervention feasibility/efficacy we conducted a randomized wait-list control group in Intensive Care Units (ICUs). ICUs represent a high-stress work environment where personnel experience chronic exposure to catastrophic situations as they care for seriously injured/ill patients. Despite high levels of work-related stress, few interventions have been developed and delivered onsite for such environments. The intervention is delivered on site in the ICU, during work hours, with participants receiving time release to attend sessions. The intervention is well received with 97% retention rate. Work engagement and resiliency increase significantly in the intervention group, compared to the wait-list control group, while participant respiration rates decrease significantly pre-post in 6/8 of the weekly sessions. Participants value institutional support, relaxing music, and the instructor as pivotal to program success. This provides evidence that MIM is feasible, well accepted, and can be effectively implemented in a chronically high-stress work environment.
24 Related JoVE Articles!
Play Button
Christopher Hughes: An in vitro model for the Study of Angiogenesis (Interview)
Authors: Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Christopher C.W. Hughes describes the utility of his culture system for studying angiogenesis in vitro. He explains the importance of fibroblasts that secrete a critical, yet unidentified, soluble factor that allow endothelial cells to form vessels in culture that branch, form proper lumens, and undergo anastamosis.
Cellular Biology, Issue 3, angiogenesis, fibrin, endothelial, HUVEC, umbilical, Translational Research
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Murine Endoscopy for In Vivo Multimodal Imaging of Carcinogenesis and Assessment of Intestinal Wound Healing and Inflammation
Authors: Markus Brückner, Philipp Lenz, Tobias M. Nowacki, Friederike Pott, Dirk Foell, Dominik Bettenworth.
Institutions: University Hospital Münster, University Children's Hospital Münster.
Mouse models are widely used to study pathogenesis of human diseases and to evaluate diagnostic procedures as well as therapeutic interventions preclinically. However, valid assessment of pathological alterations often requires histological analysis, and when performed ex vivo, necessitates death of the animal. Therefore in conventional experimental settings, intra-individual follow-up examinations are rarely possible. Thus, development of murine endoscopy in live mice enables investigators for the first time to both directly visualize the gastrointestinal mucosa and also repeat the procedure to monitor for alterations. Numerous applications for in vivo murine endoscopy exist, including studying intestinal inflammation or wound healing, obtaining mucosal biopsies repeatedly, and to locally administer diagnostic or therapeutic agents using miniature injection catheters. Most recently, molecular imaging has extended diagnostic imaging modalities allowing specific detection of distinct target molecules using specific photoprobes. In conclusion, murine endoscopy has emerged as a novel cutting-edge technology for diagnostic experimental in vivo imaging and may significantly impact on preclinical research in various fields.
Medicine, Issue 90, gastroenterology, in vivo imaging, murine endoscopy, diagnostic imaging, carcinogenesis, intestinal wound healing, experimental colitis
Play Button
Propagation of Homalodisca coagulata virus-01 via Homalodisca vitripennis Cell Culture
Authors: Anna M. Biesbrock, Christopher M. Powell, Wayne B. Hunter, Blake R. Bextine.
Institutions: University of Texas at Tyler, USDA ARS.
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa (X. fastidiosa), a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevine. Pierce’s disease is economically damaging; thus, H. vitripennis have become a target for pathogen management strategies. A dicistrovirus identified as Homalodisca coagulata virus-01 (HoCV-01) has been associated with an increased mortality in H. vitripennis populations. Because a host cell is required for HoCV-01 replication, cell culture provides a uniform environment for targeted replication that is logistically and economically valuable for biopesticide production. In this study, a system for large-scale propagation of H. vitripennis cells via tissue culture was developed, providing a viral replication mechanism. HoCV-01 was extracted from whole body insects and used to inoculate cultured H. vitripennis cells at varying levels. The culture medium was removed every 24 hr for 168 hr, RNA extracted and analyzed with qRT-PCR. Cells were stained with trypan blue and counted to quantify cell survivability using light microscopy. Whole virus particles were extracted up to 96 hr after infection, which was the time point determined to be before total cell culture collapse occurred. Cells were also subjected to fluorescent staining and viewed using confocal microscopy to investigate viral activity on F-actin attachment and nuclei integrity. The conclusion of this study is that H. vitripennis cells are capable of being cultured and used for mass production of HoCV-01 at a suitable level to allow production of a biopesticide.
Infection, Issue 91, Homalodisca vitripennis, Homalodisca coagulata virus-01, cell culture, Pierce’s disease of grapevine, Xylella fastidiosa, Dicistroviridae
Play Button
A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
Authors: Aamer Sandoo, George D. Kitas.
Institutions: Bangor University, Russells Hall Hospital, University of Manchester.
The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research.
Medicine, Issue 96, Endothelium, Cardiovascular, Flow-mediated dilatation, Carotid intima-media thickness, Atherosclerosis, Nitric oxide, Microvasculature, Laser Doppler Imaging
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
Play Button
A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells
Authors: Darius J. R. Lane, Alfons Lawen.
Institutions: University of Sydney, Monash University.
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Biochemistry, Issue 86, Vitamin C, Ascorbate, Cell swelling, Glutamate, Microplate assay, Astrocytes
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Sigma's Non-specific Protease Activity Assay - Casein as a Substrate
Authors: Carrie Cupp-Enyard.
Institutions: Sigma Aldrich.
Proteases break peptide bonds. In the lab, it is often necessary to measure and/or compare the activity of proteases. Sigma's non-specific protease activity assay may be used as a standardized procedure to determine the activity of proteases, which is what we do during our quality control procedures. In this assay, casein acts as a substrate. When the protease we are testing digests casein, the amino acid tyrosine is liberated along with other amino acids and peptide fragments. Folin and Ciocalteus Phenol, or Folin's reagent primarily reacts with free tyrosine to produce a blue colored chromophore, which is quantifiable and measured as an absorbance value on the spectrophotometer. The more tyrosine that is released from casein, the more the chromophores are generated and the stronger the activity of the protease. Absorbance values generated by the activity of the protease are compared to a standard curve, which is generated by reacting known quantities of tyrosine with the F-C reagent to correlate changes in absorbance with the amount of tyrosine in micromoles. From the standard curve the activity of protease samples can be determined in terms of Units, which is the amount in micromoles of tyrosine equivalents released from casein per minute. To view this article in Chinese, click here
biochemistry, Issue 19, protease, casein, quality control assay, folin and ciocalteu's reagent, folin's reagent, colorimetric detection, spectrophotometer, Sigma-Aldrich
Play Button
Changes in Mammary Gland Morphology and Breast Cancer Risk in Rats
Authors: Sonia de Assis, Anni Warri, M. Idalia Cruz, Leena Hilakivi-Clarke.
Institutions: Georgetown University, University of Turku Medical Faculty.
Studies in rodent models of breast cancer show that exposures to dietary/hormonal factors during the in utero and pubertal periods, when the mammary gland undergoes extensive modeling and re-modeling, alter susceptibility to carcinogen-induced mammary tumors. Similar findings have been described in humans: for example, high birthweight increases later risk of developing breast cancer, and dietary intake of soy during childhood decreases breast cancer risk. It is thought that these prenatal and postnatal dietary modifications induce persistent morphological changes in the mammary gland that in turn modify breast cancer risk later in life. These morphological changes likely reflect epigenetic modifications, such as changes in DNA methylation, histones and miRNA expression that then affect gene transcription . In this article we describe how changes in mammary gland morphology can predict mammary cancer risk in rats. Our protocol specifically describes how to dissect and remove the rat abdominal mammary gland and how to prepare mammary gland whole mounts. It also describes how to analyze mammary gland morphology according to three end-points (number of terminal end buds, epithelial elongation and differentiation) and to use the data to predict risk of developing mammary cancer.
Medicine, Issue 44, mammary gland morphology, terminal end buds, mammary cancer, maternal dietary exposures, pregnancy, prepubertal dietay exposures
Play Button
Solid Plate-based Dietary Restriction in Caenorhabditis elegans
Authors: Tsui-Ting Ching, Ao-Lin Hsu.
Institutions: University of Michigan, University of Michigan.
Reduction of food intake without malnutrition or starvation is known to increase lifespan and delay the onset of various age-related diseases in a wide range of species, including mammals. It also causes a decrease in body weight and fertility, as well as lower levels of plasma glucose, insulin, and IGF-1 in these animals. This treatment is often referred to as dietary restriction (DR) or caloric restriction (CR). The nematode Caenorhabditis elegans has emerged as an important model organism for studying the biology of aging. Both environmental and genetic manipulations have been used to model DR and have shown to extend lifespan in C. elegans. However, many of the reported DR studies in C. elegans were done by propagating animals in liquid media, while most of the genetic studies in the aging field were done on the standard solid agar in petri plates. Here we present a DR protocol using standard solid NGM agar-based plate with killed bacteria.
Developmental Biology, Issue 51, Dietary restriction, caloric restriction, C. elegans, longevity
Play Button
The ex vivo Isolated Skeletal Microvessel Preparation for Investigation of Vascular Reactivity
Authors: Joshua T. Butcher, Adam G. Goodwill, Jefferson C. Frisbee.
Institutions: West Virginia University .
The isolated microvessel preparation is an ex vivo preparation that allows for examination of the different contributions of factors that control vessel diameter, and thus, perfusion resistance1-5. This is a classic experimental preparation that was, in large measure, initially described by Uchida et al.15 several decades ago. This initial description provided the basis for the techniques that was extensively modified and enhanced, primarily in the laboratory of Dr. Brian Duling at the University of Virginia6-8, and we present a current approach in the following pages. This preparation will specifically refer to the gracilis arteriole in a rat as the microvessel of choice, but the basic preparation can readily be applied to vessels isolated from nearly any other tissue or organ across species9-13. Mechanical (i.e., dimensional) changes in the isolated microvessels can easily be evaluated in response to a broad array of physiological (e.g., hypoxia, intravascular pressure, or shear) or pharmacological challenges, and can provide insight into mechanistic elements comprising integrated responses in an intact, although ex vivo, tissue. The significance of this method is that it allows for facile manipulation of the influences on the integrated regulation of microvessel diameter, while also allowing for the control of many of the contributions from other sources, including intravascular pressure (myogenic), autonomic innervation, hemodynamic (e.g., shear stress), endothelial dependent or independent stimuli, hormonal, and parenchymal influences, to provide a partial list. Under appropriate experimental conditions and with appropriate goals, this can serve as an advantage over in vivo or in situ tissue/organ preparations, which do not readily allow for the facile control of broader systemic variables. The major limitation of this preparation is essentially the consequence of its strengths. By definition, the behavior of these vessels is being studied under conditions where many of the most significant contributors to the regulation of vascular resistance have been removed, including neural, humoral, metabolic, etc. As such, the investigator is cautioned to avoid over-interpretation and extrapolation of the data that are collected utilizing this preparation. The other significant area of concern with regard to this preparation is that it can be very easy to damage cellular components such as the endothelial lining or the vascular smooth muscle, such that variable source of error can be introduced. It is strongly recommended that the individual investigator utilize appropriate measurements to ensure the quality of the preparation, both at the initiation of the experiment and periodically throughout the course of a protocol.
Physiology, Issue 62, isolated microvessel preparation, skeletal muscle arterioles, resistance arteriole, microcirculation, arteriolar wall mechanics
Play Button
Movement Retraining using Real-time Feedback of Performance
Authors: Michael Anthony Hunt.
Institutions: University of British Columbia .
Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes. Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session. This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.
Medicine, Issue 71, Biophysics, Anatomy, Physiology, Physics, Biomedical Engineering, Behavior, Psychology, Kinesiology, Physical Therapy, Musculoskeletal System, Biofeedback, biomechanics, gait, movement, walking, rehabilitation, clinical, training
Play Button
5/6th Nephrectomy in Combination with High Salt Diet and Nitric Oxide Synthase Inhibition to Induce Chronic Kidney Disease in the Lewis Rat
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Institutions: University Medical Center Utrecht.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
Medicine, Issue 77, Anatomy, Physiology, Biomedical Engineering, Surgery, Nephrology Kidney Diseases, Glomerular Filtration Rate, Hemodynamics, Surgical Procedures, Operative, Chronic kidney disease, remnant kidney, chronic renal diseases, kidney, Nitric Oxide depletion, NO depletion, high salt diet, proteinuria, uremia, glomerulosclerosis, transgenic rat, animal model
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Retinal Detachment Model in Rodents by Subretinal Injection of Sodium Hyaluronate
Authors: Hidetaka Matsumoto, Joan W. Miller, Demetrios G. Vavvas.
Institutions: Massachusetts Eye and Ear Infirmary, Harvard Medical School.
Subretinal injection of sodium hyaluronate is a widely accepted method of inducing retinal detachment (RD). However, the height and duration of RD or the occurrence of subretinal hemorrhage can affect photoreceptor cell death in the detached retina. Hence, it is advantageous to create reproducible RDs without subretinal hemorrhage for evaluating photoreceptor cell death. We modified a previously reported method to create bullous and persistent RDs in a reproducible location with rare occurrence of subretinal hemorrhage. The critical step of this modified method is the creation of a self-sealing scleral incision, which can prevent leakage of sodium hyaluronate after injection into the subretinal space. To make the self-sealing scleral incision, a scleral tunnel is created, followed by scleral penetration into the choroid with a 30 G needle. Although choroidal hemorrhage may occur during this step, astriction with a surgical spear reduces the rate of choroidal hemorrhage. This method allows a more reproducible and reliable model of photoreceptor death in diseases that involve RD such as rhegmatogenous RD, retinopathy of prematurity, diabetic retinopathy, central serous chorioretinopathy, and age-related macular degeneration (AMD).
Medicine, Issue 79, Photoreceptor Cells, Rodentia, Retinal Degeneration, Retinal Detachment, animal models, Neuroscience, ophthalmology, retina, mouse, photoreceptor cell death, retinopathy, age-related macular degeneration (AMD)
Play Button
Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans
Authors: Marshall L. Deline, Tracy L. Vrablik, Jennifer L. Watts.
Institutions: Washington State University, Washington State University.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.
Biochemistry, Issue 81, Caenorhabditis elegans, C. elegans, Nutrition Therapy, genetics (animal and plant), Polyunsaturated fatty acids, omega-6, omega-3, dietary fat, dihomo-gamma-linolenic acid, germ cells
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae
Authors: Katerine Napan, Derek Hess, Brian McNeil, Jason C. Quinn.
Institutions: Utah State University.
Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.
Environmental Sciences, Issue 101, algae, heavy metals, Nannochloropsis salina, photobioreactor, flue gas, inductively coupled plasma mass spectrometry, ICPMS, cold vapor atomic absorption spectrometry, CVAAS
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.