JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Distinct phenotype, longitudinal changes of numbers and cell-associated virus in blood dendritic cells in SIV-infected CD8-lymphocyte depleted macaques.
PUBLISHED: 04-28-2015
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Published: 10-15-2013
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
19 Related JoVE Articles!
Play Button
Isolation of Myeloid Dendritic Cells and Epithelial Cells from Human Thymus
Authors: Christina Stoeckle, Ioanna A. Rota, Eva Tolosa, Christoph Haller, Arthur Melms, Eleni Adamopoulou.
Institutions: Hertie Institute for Clinical Brain Research, University of Bern, University Medical Center Hamburg-Eppendorf, University Clinic Tuebingen, University Hospital Erlangen.
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c+), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45hi) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Immunology, Issue 79, Immune System Processes, Biological Processes, immunology, Immune System Diseases, Immune System Phenomena, Life Sciences (General), immunology, human thymus, isolation, dendritic cells, mTEC, cTEC
Play Button
Assessing the Development of Murine Plasmacytoid Dendritic Cells in Peyer's Patches Using Adoptive Transfer of Hematopoietic Progenitors
Authors: Haiyan S. Li, Stephanie S. Watowich.
Institutions: The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences.
This protocol details a method to analyze the ability of purified hematopoietic progenitors to generate plasmacytoid dendritic cells (pDC) in intestinal Peyer's patch (PP). Common dendritic cell progenitors (CDPs, lin- c-kitlo CD115+ Flt3+) were purified from the bone marrow of C57BL6 mice by FACS and transferred to recipient mice that lack a significant pDC population in PP; in this case, Ifnar-/- mice were used as the transfer recipients. In some mice, overexpression of the dendritic cell growth factor Flt3 ligand (Flt3L) was enforced prior to adoptive transfer of CDPs, using hydrodynamic gene transfer (HGT) of Flt3L-encoding plasmid. Flt3L overexpression expands DC populations originating from transferred (or endogenous) hematopoietic progenitors. At 7-10 days after progenitor transfer, pDCs that arise from the adoptively transferred progenitors were distinguished from recipient cells on the basis of CD45 marker expression, with pDCs from transferred CDPs being CD45.1+ and recipients being CD45.2+. The ability of transferred CDPs to contribute to the pDC population in PP and to respond to Flt3L was evaluated by flow cytometry of PP single cell suspensions from recipient mice. This method may be used to test whether other progenitor populations are capable of generating PP pDCs. In addition, this approach could be used to examine the role of factors that are predicted to affect pDC development in PP, by transferring progenitor subsets with an appropriate knockdown, knockout or overexpression of the putative developmental factor and/or by manipulating circulating cytokines via HGT. This method may also allow analysis of how PP pDCs affect the frequency or function of other immune subsets in PPs. A unique feature of this method is the use of Ifnar-/- mice, which show severely depleted PP pDCs relative to wild type animals, thus allowing reconstitution of PP pDCs in the absence of confounding effects from lethal irradiation.
Immunology, Issue 85, hematopoiesis, dendritic cells, Peyer's patch, cytokines, adoptive transfer
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Development of an IFN-γ ELISpot Assay to Assess Varicella-Zoster Virus-specific Cell-mediated Immunity Following Umbilical Cord Blood Transplantation
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Institutions: Université de Montréal, Université de Montréal, Université de Montréal.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
Immunology, Issue 89, Varicella zoster virus, cell-mediated immunity, T cells, interferon gamma, ELISpot, umbilical cord blood transplantation
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection
Authors: Guorui Xie, Melissa C. Whiteman, Jason A. Wicker, Alan D.T. Barrett, Tian Wang.
Institutions: The University of Texas Medical Branch, The University of Texas Medical Branch, The University of Texas Medical Branch.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.
Immunology, Issue 93, West Nile Virus, Dendritic cells, T cells, cytokine, proliferation, in vitro
Play Button
Whole-animal Imaging and Flow Cytometric Techniques for Analysis of Antigen-specific CD8+ T Cell Responses after Nanoparticle Vaccination
Authors: Lukasz J. Ochyl, James J Moon.
Institutions: University of Michigan, University of Michigan, University of Michigan.
Traditional vaccine adjuvants, such as alum, elicit suboptimal CD8+ T cell responses. To address this major challenge in vaccine development, various nanoparticle systems have been engineered to mimic features of pathogens to improve antigen delivery to draining lymph nodes and increase antigen uptake by antigen-presenting cells, leading to new vaccine formulations optimized for induction of antigen-specific CD8+ T cell responses. In this article, we describe the synthesis of a “pathogen-mimicking” nanoparticle system, termed interbilayer-crosslinked multilamellar vesicles (ICMVs) that can serve as an effective vaccine carrier for co-delivery of subunit antigens and immunostimulatory agents and elicitation of potent cytotoxic CD8+ T lymphocyte (CTL) responses. We describe methods for characterizing hydrodynamic size and surface charge of vaccine nanoparticles with dynamic light scattering and zeta potential analyzer and present a confocal microscopy-based procedure to analyze nanoparticle-mediated antigen delivery to draining lymph nodes. Furthermore, we show a new bioluminescence whole-animal imaging technique utilizing adoptive transfer of luciferase-expressing, antigen-specific CD8+ T cells into recipient mice, followed by nanoparticle vaccination, which permits non-invasive interrogation of expansion and trafficking patterns of CTLs in real time. We also describe tetramer staining and flow cytometric analysis of peripheral blood mononuclear cells for longitudinal quantification of endogenous T cell responses in mice vaccinated with nanoparticles.
Immunology, Issue 98, nanoparticle, vaccine, biomaterial, subunit antigen, adjuvant, cytotoxic CD8+ T lymphocyte, whole animal imaging, tetramer staining, and lymph node
Play Button
Application of Long-term cultured Interferon-γ Enzyme-linked Immunospot Assay for Assessing Effector and Memory T Cell Responses in Cattle
Authors: Mayara F. Maggioli, Mitchell V. Palmer, H. Martin Vordermeier, Adam O. Whelan, James M. Fosse, Brian J. Nonnecke, W. Ray Waters.
Institutions: United States Department of Agriculture, Iowa State University, UK Veterinary Laboratories Agency, United States Department of Agriculture.
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primarily effector and effector memory T cell responses. Central memory T cell responses by CD4+ T cells to vaccination, on the other hand, may be used to predict vaccine efficacy, as demonstrated with simian immunodeficiency virus infection of non-human primates, tuberculosis in mice, and malaria in humans. Several studies with mice and humans as well as unpublished data on cattle, have demonstrated that interferon-γ ELISPOT assays measure central memory T cell responses. With this assay, peripheral blood mononuclear cells are cultured in decreasing concentration of antigen for 10 to 14 days (long-term culture), allowing effector responses to peak and wane; facilitating central memory T cells to differentiate and expand within the culture.
Immunology, Issue 101, Immunology, bovine tuberculosis, CD4 T cells, vaccine.
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
Play Button
A Technique to Simultaneously Visualize Virus-Specific CD8+ T Cells and Virus-Infected Cells In situ
Authors: Qingsheng Li, Pamela J. Skinner, Lijie Duan, Ashley T. Haase.
Institutions: University of Minnesota, University of Minnesota.
The numbers and locations of virus-specific CD8+ T cells relative to the numbers and locations of their infected cell targets is thought to be critical in determining outcomes that range from clearance to chronic persistent infections. We describe here a method for assessing the spatial and quantitative relationships between immune effector (E) virus-specific CD8+ T cells and infected targets (T) that combines in situ tetramer (IST) staining to detect virus-specific CD8+ T cells and in situ hybridization (ISH) to detect viral-RNA+ cells in the tissues where the battle between immune defenses and infection takes place. The combination of IST staining and ISH, abbreviated ISTH, enables visualization and mapping of the locations of immune effector cells and targets, and facile determination of E:T ratios. These parameters in turn can then be used to determine the relationships between spatial proximity, and the timing and magnitude of the immune response that predict outcomes in early infection.
Immunology, Issue 30, Virus, antigen-specific T cells, in situ tetramer staining, in situ hybridization
Play Button
Multicolor Flow Cytometry Analyses of Cellular Immune Response in Rhesus Macaques
Authors: Hong He, Amy N. Courtney, Eric Wieder, K. Jagannadha Sastry.
Institutions: MD Anderson Cancer Center - University of Texas, University of Miami.
The rhesus macaque model is currently the best available model for HIV-AIDS with respect to understanding the pathogenesis as well as for the development of vaccines and therapeutics1,2,3. Here, we describe a method for the detailed phenotypic and functional analyses of cellular immune responses, specifically intracellular cytokine production by CD4+ and CD8+ T cells as well as the individual memory subsets. We obtained precise quantitative and qualitative measures for the production of interferon gamma (INF-) and interleukin (IL) -2 in both CD4+ and CD8+ T cells from the rhesus macaque PBMC stimulated with PMA plus ionomycin (PMA+I). The cytokine profiles were different in the different subsets of memory cells. Furthermore, this protocol provided us the sensitivity to demonstrate even minor fractions of antigen specific CD4+ and CD8+ T cell subsets within the PBMC samples from rhesus macaques immunized with an HIV envelope peptide cocktail vaccine developed in our laboratory. The multicolor flow cytometry technique is a powerful tool to precisely identify different populations of T cells 4,5 with cytokine-producing capability6 following non-specific or antigen-specific stimulation 5,7.
JoVE Immunology, Issue 38, Immune Response, Cytokine Production, Flow Cytometry, HIV, Rhesus Macaque, T Cells, Intracellular Cytokine Staining, FACS
Play Button
Isolation of Mouse Lung Dendritic Cells
Authors: Wallissa Lancelin, Antonieta Guerrero-Plata.
Institutions: Louisiana State University .
Lung dendritic cells (DC) play a fundamental role in sensing invading pathogens 1,2 as well as in the control of tolerogenic responses 3 in the respiratory tract. At least three main subsets of lung dendritic cells have been described in mice: conventional DC (cDC) 4, plasmacytoid DC (pDC) 5 and the IFN-producing killer DC (IKDC) 6,7. The cDC subset is the most prominent DC subset in the lung 8. The common marker known to identify DC subsets is CD11c, a type I transmembrane integrin (β2) that is also expressed on monocytes, macrophages, neutrophils and some B cells 9. In some tissues, using CD11c as a marker to identify mouse DC is valid, as in spleen, where most CD11c+ cells represent the cDC subset which expresses high levels of the major histocompatibility complex class II (MHC-II). However, the lung is a more heterogeneous tissue where beside DC subsets, there is a high percentage of a distinct cell population that expresses high levels of CD11c bout low levels of MHC-II. Based on its characterization and mostly on its expression of F4/80, an splenic macrophage marker, the CD11chiMHC-IIlo lung cell population has been identified as pulmonary macrophages 10 and more recently, as a potential DC precursor 11. In contrast to mouse pDC, the study of the specific role of cDC in the pulmonary immune response has been limited due to the lack of a specific marker that could help in the isolation of these cells. Therefore, in this work, we describe a procedure to isolate highly purified mouse lung cDC. The isolation of pulmonary DC subsets represents a very useful tool to gain insights into the function of these cells in response to respiratory pathogens as well as environmental factors that can trigger the host immune response in the lung.
Immunology, Issue 57, Lung, dendritic cells, classical, conventional, isolation, mouse, innate immunity, pulmonary
Play Button
Quantitative Imaging of Lineage-specific Toll-like Receptor-mediated Signaling in Monocytes and Dendritic Cells from Small Samples of Human Blood
Authors: Feng Qian, Ruth R. Montgomery.
Institutions: Yale University School of Medicine .
Individual variations in immune status determine responses to infection and contribute to disease severity and outcome. Aging is associated with an increased susceptibility to viral and bacterial infections and decreased responsiveness to vaccines with a well-documented decline in humoral as well as cell-mediated immune responses1,2. We have recently assessed the effects of aging on Toll-like receptors (TLRs), key components of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses3. In a large cohort of healthy human donors, we showed that peripheral blood monocytes from the elderly have decreased expression and function of certain TLRs4 and similar reduced TLR levels and signaling responses in dendritic cells (DCs), antigen-presenting cells that are pivotal in the linkage between innate and adaptive immunity5. We have shown dysregulation of TLR3 in macrophages and lower production of IFN by DCs from elderly donors in response to infection with West Nile virus6,7. Paramount to our understanding of immunosenescence and to therapeutic intervention is a detailed understanding of specific cell types responding and the mechanism(s) of signal transduction. Traditional studies of immune responses through imaging of primary cells and surveying cell markers by FACS or immunoblot have advanced our understanding significantly, however, these studies are generally limited technically by the small sample volume available from patients and the inability to conduct complex laboratory techniques on multiple human samples. ImageStream combines quantitative flow cytometry with simultaneous high-resolution digital imaging and thus facilitates investigation in multiple cell populations contemporaneously for an efficient capture of patient susceptibility. Here we demonstrate the use of ImageStream in DCs to assess TLR7/8 activation-mediated increases in phosphorylation and nuclear translocation of a key transcription factor, NF-κB, which initiates transcription of numerous genes that are critical for immune responses8. Using this technology, we have also recently demonstrated a previously unrecognized alteration of TLR5 signaling and the NF-κB pathway in monocytes from older donors that may contribute to altered immune responsiveness in aging9.
Immunology, Issue 62, monocyte, dendritic cells, Toll-like receptors, fluorescent imaging, signaling, FACS, aging
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Optimized Staining and Proliferation Modeling Methods for Cell Division Monitoring using Cell Tracking Dyes
Authors: Joseph D. Tario Jr., Kristen Humphrey, Andrew D. Bantly, Katharine A. Muirhead, Jonni S. Moore, Paul K. Wallace.
Institutions: Roswell Park Cancer Institute, University of Pennsylvania , SciGro, Inc., University of Pennsylvania .
Fluorescent cell tracking dyes, in combination with flow and image cytometry, are powerful tools with which to study the interactions and fates of different cell types in vitro and in vivo.1-5 Although there are literally thousands of publications using such dyes, some of the most commonly encountered cell tracking applications include monitoring of: stem and progenitor cell quiescence, proliferation and/or differentiation6-8 antigen-driven membrane transfer9 and/or precursor cell proliferation3,4,10-18 and immune regulatory and effector cell function1,18-21. Commercially available cell tracking dyes vary widely in their chemistries and fluorescence properties but the great majority fall into one of two classes based on their mechanism of cell labeling. "Membrane dyes", typified by PKH26, are highly lipophilic dyes that partition stably but non-covalently into cell membranes1,2,11. "Protein dyes", typified by CFSE, are amino-reactive dyes that form stable covalent bonds with cell proteins4,16,18. Each class has its own advantages and limitations. The key to their successful use, particularly in multicolor studies where multiple dyes are used to track different cell types, is therefore to understand the critical issues enabling optimal use of each class2-4,16,18,24. The protocols included here highlight three common causes of poor or variable results when using cell-tracking dyes. These are: Failure to achieve bright, uniform, reproducible labeling. This is a necessary starting point for any cell tracking study but requires attention to different variables when using membrane dyes than when using protein dyes or equilibrium binding reagents such as antibodies. Suboptimal fluorochrome combinations and/or failure to include critical compensation controls. Tracking dye fluorescence is typically 102 - 103 times brighter than antibody fluorescence. It is therefore essential to verify that the presence of tracking dye does not compromise the ability to detect other probes being used. Failure to obtain a good fit with peak modeling software. Such software allows quantitative comparison of proliferative responses across different populations or stimuli based on precursor frequency or other metrics. Obtaining a good fit, however, requires exclusion of dead/dying cells that can distort dye dilution profiles and matching of the assumptions underlying the model with characteristics of the observed dye dilution profile. Examples given here illustrate how these variables can affect results when using membrane and/or protein dyes to monitor cell proliferation.
Cellular Biology, Issue 70, Molecular Biology, Cell tracking, PKH26, CFSE, membrane dyes, dye dilution, proliferation modeling, lymphocytes
Play Button
Enumeration of Major Peripheral Blood Leukocyte Populations for Multicenter Clinical Trials Using a Whole Blood Phenotyping Assay
Authors: Tiffany R. Hensley, Austin B. Easter, Sarah E. Gerdts, Stephen C. De Rosa, Antje Heit, M. Juliana McElrath, Erica Andersen-Nissen.
Institutions: Fred Hutchinson Cancer Research Center.
Cryopreservation of peripheral blood leukocytes is widely used to preserve cells for immune response evaluations in clinical trials and offers many advantages for ease and standardization of immunological assessments, but detrimental effects of this process have been observed on some cell subsets, such as granulocytes, B cells, and dendritic cells 1-3. Assaying fresh leukocytes gives a more accurate picture of the in vivo state of the cells, but is often difficult to perform in the context of large clinical trials. Fresh cell assays are dependent upon volunteer commitments and timeframes and, if time-consuming, their application can be impractical due to the working hours required of laboratory personnel. In addition, when trials are conducted at multiple centers, laboratories with the resources and training necessary to perform the assays may not be located in sufficient proximity to clinical sites. To address these issues, we have developed an 11-color antibody staining panel that can be used with Trucount tubes (Becton Dickinson; San Jose, CA) to phenotype and enumerate the major leukocyte populations within the peripheral blood, yielding more robust cell-type specific information than assays such as a complete blood count (CBC) or assays with commercially-available panels designed for Trucount tubes that stain for only a few cell types. The staining procedure is simple, requires only 100 μl of fresh whole blood, and takes approximately 45 minutes, making it feasible for standard blood-processing labs to perform. It is adapted from the BD Trucount tube technical data sheet (version 8/2010). The staining antibody cocktail can be prepared in advance in bulk at a central assay laboratory and shipped to the site processing labs. Stained tubes can be fixed and frozen for shipment to the central assay laboratory for multicolor flow cytometry analysis. The data generated from this staining panel can be used to track changes in leukocyte concentrations over time in relation to intervention and could easily be further developed to assess activation states of specific cell types of interest. In this report, we demonstrate the procedure used by blood-processing lab technicians to perform staining on fresh whole blood and the steps to analyze these stained samples at a central assay laboratory supporting a multicenter clinical trial. The video details the procedure as it is performed in the context of a clinical trial blood draw in the HIV Vaccine Trials Network (HVTN).
Immunology, Issue 67, Medicine, Molecular Biology, Cellular Biology, Infectious Disease, absolute cell count, whole blood, clinical trial, phenotyping, flow cytometry, leukocyte, T cells
Play Button
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Authors: Wei-Meng Woo, Scott X. Atwood, Hanson H. Zhen, Anthony E. Oro.
Institutions: Stanford University School of Medicine .
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models.
Genetics, Issue 72, Tissue Engineering, Medicine, Biomedical Engineering, Cellular Biology, Surgery, Epithelial Biology, regeneration, chamber, hair, follicle, dermis, dermal cells, keratinocyte, graft, epithelial, cell culture, lentivirus, knockdown, shRNA-mediated knockdown, overexpression, mice, transgenic mice, animal model
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.