JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Exercise Physiology and Pulmonary Hemodynamic Abnormality in PH Patients with Exercise Induced Venous-To-Systemic Shunt.
PUBLISHED: 04-29-2015
To identify the pulmonary hypertension (PH) patients who develop an exercise induced venous-to-systemic shunt (EIS) by performing the cardiopulmonary exercise test (CPET), analyse the changes of CPET measurements during exercise and compare the exercise physiology and resting pulmonary hemodynamics between shunt-PH and no-shunt-PH patients.
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Published: 11-08-2013
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
19 Related JoVE Articles!
Play Button
Increasing Pulmonary Artery Pulsatile Flow Improves Hypoxic Pulmonary Hypertension in Piglets
Authors: Audrey Courboulin, Chantal Kang, Olivier Baillard, Sebastien Bonnet, Pierre Bonnet.
Institutions: Laval University, Institut National de la Recherche Agronomique, Sorbonne Paris Cité, Physiologie clinique Explorations Fonctionnelles, INSERM U 965, Centre Hospitalier Universitaire Tours.
Pulmonary arterial hypertension (PAH) is a disease affecting distal pulmonary arteries (PA). These arteries are deformed, leading to right ventricular failure. Current treatments are limited. Physiologically, pulsatile blood flow is detrimental to the vasculature. In response to sustained pulsatile stress, vessels release nitric oxide (NO) to induce vasodilation for self-protection. Based on this observation, this study developed a protocol to assess whether an artificial pulmonary pulsatile blood flow could induce an NO-dependent decrease in pulmonary artery pressure. One group of piglets was exposed to chronic hypoxia for 3 weeks and compared to a control group of piglets. Once a week, the piglets underwent echocardiography to assess PAH severity. At the end of hypoxia exposure, the piglets were subjected to a pulsatile protocol using a pulsatile catheter. After being anesthetized and prepared for surgery, the jugular vein of the piglet was isolated and the catheter was introduced through the right atrium, the right ventricle and the pulmonary artery, under radioscopic control. Pulmonary artery pressure (PAP) was measured before (T0), immediately after (T1) and 30 min after (T2) the pulsatile protocol. It was demonstrated that this pulsatile protocol is a safe and efficient method of inducing a significant reduction in mean PAP via an NO-dependent mechanism. These data open up new avenues for the clinical management of PAH.
Medicine, Issue 99, Piglets, pulmonary arterial hypertension, right heart catheterization, pulmonary artery pressure, vascular pulsatility, vasodilation, nitric oxide
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
Play Button
Monitoring of Systemic and Hepatic Hemodynamic Parameters in Mice
Authors: Chichi Xie, Weiwei Wei, Tao Zhang, Olaf Dirsch, Uta Dahmen.
Institutions: Jena University Hospital, Jena University Hospital, The First Affiliated Hospital of Wenzhou Medical University.
The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure. This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41±2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87±2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed.
Medicine, Issue 92, mice, hemodynamics, hepatic perfusion, CAP, CVP, surgery, intraoperative monitoring, portal vein pressure, blood flow
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
Play Button
A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
Authors: Aamer Sandoo, George D. Kitas.
Institutions: Bangor University, Russells Hall Hospital, University of Manchester.
The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research.
Medicine, Issue 96, Endothelium, Cardiovascular, Flow-mediated dilatation, Carotid intima-media thickness, Atherosclerosis, Nitric oxide, Microvasculature, Laser Doppler Imaging
Play Button
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Authors: Lorissa Lamoureux, Jeejabai Radhakrishnan, Raúl J. Gazmuri.
Institutions: Rosalind Franklin University of Medicine and Science.
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.
Medicine, Issue 98, Cardiopulmonary resuscitation, Hemodynamics, Myocardial ischemia, Rats, Reperfusion, Ventilation, Ventricular fibrillation, Ventricular function, Translational medical research
Play Button
Vision Training Methods for Sports Concussion Mitigation and Management
Authors: Joseph F. Clark, Angelo Colosimo, James K. Ellis, Robert Mangine, Benjamin Bixenmann, Kimberly Hasselfeld, Patricia Graman, Hagar Elgendy, Gregory Myer, Jon Divine.
Institutions: University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, Cincinnati Children's Hospital Medical Center.
There is emerging evidence supporting the use vision training, including light board training tools, as a concussion baseline and neuro-diagnostic tool and potentially as a supportive component to concussion prevention strategies. This paper is focused on providing detailed methods for select vision training tools and reporting normative data for comparison when vision training is a part of a sports management program. The overall program includes standard vision training methods including tachistoscope, Brock’s string, and strobe glasses, as well as specialized light board training algorithms. Stereopsis is measured as a means to monitor vision training affects. In addition, quantitative results for vision training methods as well as baseline and post-testing *A and Reaction Test measures with progressive scores are reported. Collegiate athletes consistently improve after six weeks of training in their stereopsis, *A and Reaction Test scores. When vision training is initiated as a team wide exercise, the incidence of concussion decreases in players who participate in training compared to players who do not receive the vision training. Vision training produces functional and performance changes that, when monitored, can be used to assess the success of the vision training and can be initiated as part of a sports medical intervention for concussion prevention.
Behavior, Issue 99, Vision training, peripheral vision, functional peripheral vision, concussion, concussion management, diagnosis, rehabilitation, eyes, sight, seeing, sight
Play Button
Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition
Authors: Rafael Jaramillo, Vera Steinmann, Chuanxi Yang, Katy Hartman, Rupak Chakraborty, Jeremy R. Poindexter, Mariela Lizet Castillo, Roy Gordon, Tonio Buonassisi.
Institutions: Massachusetts Institute of Technology, Massachusetts Institute of Technology, Harvard University, Massachusetts Institute of Technology, Harvard University.
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.
Engineering, Issue 99, Solar cells, thin films, thermal evaporation, atomic layer deposition, annealing, tin sulfide
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Assessing Functional Performance in the Mdx Mouse Model
Authors: Annemieke Aartsma-Rus, Maaike van Putten.
Institutions: Leiden University Medical Center.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder for which no cure is available. Nevertheless, several potential pharmaceutical compounds and gene therapy approaches have progressed into clinical trials. With improvement in muscle function being the most important end point in these trials, a lot of emphasis has been placed on setting up reliable, reproducible, and easy to perform functional tests to pre clinically assess muscle function, strength, condition, and coordination in the mdx mouse model for DMD. Both invasive and noninvasive tests are available. Tests that do not exacerbate the disease can be used to determine the natural history of the disease and the effects of therapeutic interventions (e.g. forelimb grip strength test, two different hanging tests using either a wire or a grid and rotarod running). Alternatively, forced treadmill running can be used to enhance disease progression and/or assess protective effects of therapeutic interventions on disease pathology. We here describe how to perform these most commonly used functional tests in a reliable and reproducible manner. Using these protocols based on standard operating procedures enables comparison of data between different laboratories.
Behavior, Issue 85, Duchenne muscular dystrophy, neuromuscular disorders, outcome measures, functional testing, mouse model, grip strength, hanging test wire, hanging test grid, rotarod running, treadmill running
Play Button
A Method to Study the Impact of Chemically-induced Ovarian Failure on Exercise Capacity and Cardiac Adaptation in Mice
Authors: Hao Chen, Jessica N. Perez, Eleni Constantopoulos, Laurel McKee, Jessica Regan, Patricia B. Hoyer, Heddwen L. Brooks, John Konhilas.
Institutions: University of Arizona.
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.
Medicine, Issue 86, VCD, menopause, voluntary wheel running, forced treadmill exercise, exercise capacity, adaptive cardiac adaptation
Play Button
Endurance Training Protocol and Longitudinal Performance Assays for Drosophila melanogaster
Authors: Martin J. Tinkerhess, Sara Ginzberg, Nicole Piazza, Robert J. Wessells.
Institutions: University of Michigan Medical School.
One of the most pressing problems facing modern medical researchers is the surging levels of obesity, with the consequent increase in associated disorders such as diabetes and cardiovascular disease 1-3. An important topic of research into these associated health problems involves the role of endurance exercise as a beneficial intervention. Exercise training is an inexpensive, non-invasive intervention with several beneficial results, including reduction in excess body fat 4, increased insulin sensitivity in skeletal muscle 5, increased anti-inflammatory and antioxidative responses 6, and improved contractile capacity in cardiomyocytes 7. Low intensity exercise is known to increase mitochondrial activity and biogenesis in humans 8 and mice, with the transcriptional coactivator PGC1-α as an important intermediate 9,10. Despite the importance of exercise as a tool for combating several important age-related diseases, extensive longitudinal genetic studies have been impeded by the lack of an endurance training protocol for a short-lived genetic model species. The variety of genetic tools available for use with Drosophila, together with its short lifespan and inexpensive maintenance, make it an appealing model for further study of these genetic mechanisms. With this in mind we have developed a novel apparatus, known as the Power Tower, for large scale exercise-training in Drosophila melanogaster 11. The Power Tower utilizes the flies' instinctive negative geotaxis behavior to repetitively induce rapid climbing. Each time the machine lifts, then drops, the platform of flies, the flies are induced to climb. Flies continue to respond as long as the machine is in operation or until they become too fatigued to respond. Thus, the researcher can use this machine to provide simultaneous training to large numbers of age-matched and genetically identical flies. Additionally, we describe associated assays useful to track longitudinal progress of fly cohorts during training.
Physiology, Issue 61, Drosophila, endurance, exercise, training
Play Button
The Use of Thermal Infra-Red Imaging to Detect Delayed Onset Muscle Soreness
Authors: Hani H. Al-Nakhli, Jerrold S. Petrofsky, Michael S. Laymon, Lee S. Berk.
Institutions: Loma Linda University, Azusa Pacific University.
Delayed onset muscle soreness (DOMS), also known as exercise induced muscle damage (EIMD), is commonly experienced in individuals who have been physically inactive for prolonged periods of time, and begin with an unexpected bout of exercise1-4, but can also occur in athletes who exercise beyond their normal limits of training5. The symptoms associated with this painful phenomenon can range from slight muscle tenderness, to severe debilitating pain1,3,5. The intensity of these symptoms and the related discomfort increases within the first 24 hours following the termination of the exercise, and peaks between 24 to 72 hours post exercise1,3. For this reason, DOMS is one of the most common recurrent forms of sports injury that can affect an individual’s performance, and become intimidating for many1,4. For the last 3 decades, the DOMS phenomenon has gained a considerable amount of interest amongst researchers and specialists in exercise physiology, sports, and rehabilitation fields6. There has been a variety of published studies investigating this painful occurrence in regards to its underlying mechanisms, treatment interventions, and preventive strategies1-5,7-12. However, it is evident from the literature that DOMS is not an easy pathology to quantify, as there is a wide amount of variability between the measurement tools and methods used to quantify this condition6. It is obvious that no agreement has been made on one best evaluation measure for DOMS, which makes it difficult to verify whether a specific intervention really helps in decreasing the symptoms associated with this type of soreness or not. Thus, DOMS can be seen as somewhat ambiguous, because many studies depend on measuring soreness using a visual analog scale (VAS)10,13-15, which is a subjective rather than an objective measure. Even though needle biopsies of the muscle, and blood levels of myofibre proteins might be considered a gold standard to some6, large variations in some of these blood proteins have been documented 6,16, in addition to the high risks sometimes associated with invasive techniques. Therefore, in the current investigation, we tested a thermal infra-red (IR) imaging technique of the skin above the exercised muscle to detect the associated muscle soreness. Infra-red thermography has been used, and found to be successful in detecting different types of diseases and infections since the 1950’s17. But surprisingly, near to nothing has been done on DOMS and changes in skin temperature. The main purpose of this investigation was to examine changes in DOMS using this safe and non-invasive technique.
Medicine, Issue 59, DOMS, Imaging, Thermal, Infra-Red, Muscle, Soreness, Thermography
Play Button
Determining the Contribution of the Energy Systems During Exercise
Authors: Guilherme G. Artioli, Rômulo C. Bertuzzi, Hamilton Roschel, Sandro H. Mendes, Antonio H. Lancha Jr., Emerson Franchini.
Institutions: University of Sao Paulo, University of Sao Paulo, University of Sao Paulo, University of Sao Paulo.
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.
Physiology, Issue 61, aerobic metabolism, anaerobic alactic metabolism, anaerobic lactic metabolism, exercise, athletes, mathematical model
Play Button
A Swine Model of Neonatal Asphyxia
Authors: Po-Yin Cheung, Richdeep S. Gill, David L. Bigam.
Institutions: University of Alberta, University of Alberta.
Annually more than 1 million neonates die worldwide as related to asphyxia. Asphyxiated neonates commonly have multi-organ failure including hypotension, perfusion deficit, hypoxic-ischemic encephalopathy, pulmonary hypertension, vasculopathic enterocolitis, renal failure and thrombo-embolic complications. Animal models are developed to help us understand the patho-physiology and pharmacology of neonatal asphyxia. In comparison to rodents and newborn lambs, the newborn piglet has been proven to be a valuable model. The newborn piglet has several advantages including similar development as that of 36-38 weeks human fetus with comparable body systems, large body size (˜1.5-2 kg at birth) that allows the instrumentation and monitoring of the animal and controls the confounding variables of hypoxia and hemodynamic derangements. We here describe an experimental protocol to simulate neonatal asphyxia and allow us to examine the systemic and regional hemodynamic changes during the asphyxiating and reoxygenation process as well as the respective effects of interventions. Further, the model has the advantage of studying multi-organ failure or dysfunction simultaneously and the interaction with various body systems. The experimental model is a non-survival procedure that involves the surgical instrumentation of newborn piglets (1-3 day-old and 1.5-2.5 kg weight, mixed breed) to allow the establishment of mechanical ventilation, vascular (arterial and central venous) access and the placement of catheters and flow probes (Transonic Inc.) for the continuously monitoring of intra-vascular pressure and blood flow across different arteries including main pulmonary, common carotid, superior mesenteric and left renal arteries. Using these surgically instrumented piglets, after stabilization for 30-60 minutes as defined by Z<10% variation in hemodynamic parameters and normal blood gases, we commence an experimental protocol of severe hypoxemia which is induced via normocapnic alveolar hypoxia. The piglet is ventilated with 10-15% oxygen by increasing the inhaled concentration of nitrogen gas for 2h, aiming for arterial oxygen saturations of 30-40%. This degree of hypoxemia will produce clinical asphyxia with severe metabolic acidosis, systemic hypotension and cardiogenic shock with hypoperfusion to vital organs. The hypoxia is followed by reoxygenation with 100% oxygen for 0.5h and then 21% oxygen for 3.5h. Pharmacologic interventions can be introduced in due course and their effects investigated in a blinded, block-randomized fashion.
Medicine, Issue 56, Developmental Biology, pigs, newborn, hypoxia, asphyxia, reoxygenation
Play Button
Finger-stick Blood Sampling Methodology for the Determination of Exercise-induced Lymphocyte Apoptosis
Authors: James Navalta, Brian McFarlin, Richard Simpson, Elizabeth Fedor, Holly Kell, Scott Lyons, Scott Arnett, Mark Schafer.
Institutions: Western Kentucky University, University of Houston.
Exercise is a physiological stimulus capable of inducing apoptosis in immune cells. To date, various limitations have been identified with the measurement of this phenomenon, particularly relating to the amount of time required to isolate and treat a blood sample prior to the assessment of cell death. Because of this, it is difficult to determine whether reported increases in immune cell apoptosis can be contributed to the actual effect of exercise on the system, or are a reflection of the time and processing necessary to eventually obtain this measurement. In this article we demonstrate a rapid and minimally invasive procedure for the analysis of exercise-induced lymphocyte apoptosis. Unlike other techniques, whole blood is added to an antibody panel immediately upon obtaining a sample. Following the incubation period, red blood cells are lysed and samples are ready to be analyzed. The use of a finger-stick sampling procedure reduces the volume of blood required, and minimizes the discomfort to subjects.
Immunology, Issue 48, Leukocyte phenotyping, programmed cell death, muscular activity, technique development
Play Button
Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals in Axons: Student Laboratory Exercises
Authors: Martha M. Robinson, Jonathan M. Martin, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
This is a demonstration of how electrical models can be used to characterize biological membranes. This exercise also introduces biophysical terminology used in electrophysiology. The same equipment is used in the membrane model as on live preparations. Some properties of an isolated nerve cord are investigated: nerve action potentials, recruitment of neurons, and responsiveness of the nerve cord to environmental factors.
Basic Protocols, Issue 47, Invertebrate, Crayfish, Modeling, Student laboratory, Nerve cord
Play Button
Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test
Authors: Sujay S. Galen, Darren R. Guffey, Jared W. Coburn, Moh H. Malek.
Institutions: Wayne State University, University of Michigan Health System, California State University, Fullerton.
Theoretically, the electromyographic (EMG) fatigue threshold is the exercise intensity an individual can maintain indefinitely without the need to recruit more motor units which is associated with an increase in the EMG amplitude. Although different protocols have been used to estimate the EMG fatigue threshold they require multiple visits which are impractical for a clinical setting. Here, we present a protocol for estimating the EMG fatigue threshold for cycle ergometry which requires a single visit. This protocol is simple, convenient, and completed within 15-20 min, therefore, has the potential to be translated into a tool that clinicians can use in exercise prescription.
Medicine, Issue 101, Electrodes, Exercise physiology, Motor control, Neuromuscular fatigue, Noninvasive, and Quadriceps femoris
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.