JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Impact of acute malaria on pre-existing antibodies to viral and vaccine antigens in mice and humans.
.
PLoS ONE
PUBLISHED: 04-29-2015
Vaccine-induced immunity depends on long-lived plasma cells (LLPCs) that maintain antibody levels. A recent mouse study showed that Plasmodium chaubaudi infection reduced pre-existing influenza-specific antibodies--raising concerns that malaria may compromise pre-existing vaccine responses. We extended these findings to P. yoelii infection, observing decreases in antibodies to model antigens in inbred mice and to influenza in outbred mice, associated with LLPC depletion and increased susceptibility to influenza rechallenge. We investigated the implications of these findings in Malian children by measuring vaccine-specific IgG (tetanus, measles, hepatitis B) before and after the malaria-free 6-month dry season, 10 days after the first malaria episode of the malaria season, and after the subsequent dry season. On average, vaccine-specific IgG did not decrease following acute malaria. However, in some children malaria was associated with an accelerated decline in vaccine-specific IgG, underscoring the need to further investigate the impact of malaria on pre-existing vaccine-specific antibodies.
Authors: José Vicente Pérez-Girón, Sergio Gómez-Medina, Anja Lüdtke, Cesar Munoz-Fontela.
Published: 06-25-2015
ABSTRACT
Vaccines are one of the greatest achievements of mankind, and have saved millions of lives over the last century. Paradoxically, little is known about the physiological mechanisms that mediate immune responses to vaccines perhaps due to the overall success of vaccination, which has reduced interest into the molecular and physiological mechanisms of vaccine immunity. However, several important human pathogens including influenza virus still pose a challenge for vaccination, and may benefit from immune-based strategies. Although influenza reverse genetics has been successfully applied to the generation of live-attenuated influenza vaccines (LAIVs), the addition of molecular tools in vaccine preparations such as tracer components to follow up the kinetics of vaccination in vivo, has not been addressed. In addition, the recent generation of mouse models that allow specific depletion of leukocytes during kinetic studies has opened a window of opportunity to understand the basic immune mechanisms underlying vaccine-elicited protection. Here, we describe how the combination of reverse genetics and chimeric mouse models may help to provide new insights into how vaccines work at physiological and molecular levels, using as example a recombinant, cold-adapted, live-attenuated influenza vaccine (LAIV). We utilized laboratory-generated LAIVs harboring cell tracers as well as competitive bone marrow chimeras (BMCs) to determine the early kinetics of vaccine immunity and the main physiological mechanisms responsible for the initiation of vaccine-specific adaptive immunity. In addition, we show how this technique may facilitate gene function studies in single animals during immune responses to vaccines. We propose that this technique can be applied to improve current prophylactic strategies against pathogens for which urgent medical countermeasures are needed, for example influenza, HIV, Plasmodium, and hemorrhagic fever viruses such as Ebola virus.
17 Related JoVE Articles!
Play Button
Quantitative Analyses of all Influenza Type A Viral Hemagglutinins and Neuraminidases using Universal Antibodies in Simple Slot Blot Assays
Authors: Caroline Gravel, Changgui Li, Junzhi Wang, Anwar M Hashem, Bozena Jaentschke, Gary Van Domselaar, Runtao He, Xuguang Li.
Institutions: Health canada, The State Food and Drug Administration, Beijing, University of Ottawa, King Abdulaziz University, Public Health Agency of Canada.
Hemagglutinin (HA) and neuraminidase (NA) are two surface proteins of influenza viruses which are known to play important roles in the viral life cycle and the induction of protective immune responses1,2. As the main target for neutralizing antibodies, HA is currently used as the influenza vaccine potency marker and is measured by single radial immunodiffusion (SRID)3. However, the dependence of SRID on the availability of the corresponding subtype-specific antisera causes a minimum of 2-3 months delay for the release of every new vaccine. Moreover, despite evidence that NA also induces protective immunity4, the amount of NA in influenza vaccines is not yet standardized due to a lack of appropriate reagents or analytical method5. Thus, simple alternative methods capable of quantifying HA and NA antigens are desirable for rapid release and better quality control of influenza vaccines. Universally conserved regions in all available influenza A HA and NA sequences were identified by bioinformatics analyses6-7. One sequence (designated as Uni-1) was identified in the only universally conserved epitope of HA, the fusion peptide6, while two conserved sequences were identified in neuraminidases, one close to the enzymatic active site (designated as HCA-2) and the other close to the N-terminus (designated as HCA-3)7. Peptides with these amino acid sequences were synthesized and used to immunize rabbits for the production of antibodies. The antibody against the Uni-1 epitope of HA was able to bind to 13 subtypes of influenza A HA (H1-H13) while the antibodies against the HCA-2 and HCA-3 regions of NA were capable of binding all 9 NA subtypes. All antibodies showed remarkable specificity against the viral sequences as evidenced by the observation that no cross-reactivity to allantoic proteins was detected. These universal antibodies were then used to develop slot blot assays to quantify HA and NA in influenza A vaccines without the need for specific antisera7,8. Vaccine samples were applied onto a PVDF membrane using a slot blot apparatus along with reference standards diluted to various concentrations. For the detection of HA, samples and standard were first diluted in Tris-buffered saline (TBS) containing 4M urea while for the measurement of NA they were diluted in TBS containing 0.01% Zwittergent as these conditions significantly improved the detection sensitivity. Following the detection of the HA and NA antigens by immunoblotting with their respective universal antibodies, signal intensities were quantified by densitometry. Amounts of HA and NA in the vaccines were then calculated using a standard curve established with the signal intensities of the various concentrations of the references used. Given that these antibodies bind to universal epitopes in HA or NA, interested investigators could use them as research tools in immunoassays other than the slot blot only.
Immunology, Issue 50, Virology, influenza, hemagglutinin, neuraminidase, quantification, universal antibody
2784
Play Button
High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays
Authors: Danika L. Hill, Emily M. Eriksson, Louis Schofield.
Institutions: Walter and Eliza Hall Institute of Medical Research, University of Melbourne.
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  
Immunology, Issue 89, Parasitic Diseases, malaria, Plasmodium falciparum, hemozoin, antibody, Fc Receptor, opsonization, merozoite, phagocytosis, THP-1
51590
Play Button
Maintaining Wolbachia in Cell-free Medium
Authors: Courtney Gamston, Jason Rasgon.
Institutions: Johns Hopkins University.
In this video protocol, procedures are demonstrated to (1) purify Wolbachia symbionts out of cultured mosquito cells, (2) use a fluorescent assay to ascertain the viability of the purified Wolbachia and (3) maintain the now extracellular Wolbachia in cell-free medium. Purified Wolbachia remain alive in the extracellular phase but do not replicate until re-inoculated into eukaryotic cells. Extracellular Wolbachia purified in this manner will remain viable for at least a week at room temperature, and possibly longer. Purified Wolbachia are suitable for micro-injection, DNA extraction and other applications.
Cellular Biology, Issue 5, mosquito, Wolbachia, infectious disease
223
Play Button
HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins
Authors: Raghavendra Yadavalli, Tobili Sam-Yellowe.
Institutions: Cleveland State University.
Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed “in vitro human cell free expression systems”. The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer’s Cleft – 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford’s assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be used for immunizations, immunoassays and protein sequencing.
Biochemistry, Issue 100, Cell free in vitro transcription-translation, HeLa cell free expression, rhoptry proteins, mammalian cell free expression system, Plasmodium falciparum, Pro Bond affinity purification
52772
Play Button
Whole-animal Imaging and Flow Cytometric Techniques for Analysis of Antigen-specific CD8+ T Cell Responses after Nanoparticle Vaccination
Authors: Lukasz J. Ochyl, James J Moon.
Institutions: University of Michigan, University of Michigan, University of Michigan.
Traditional vaccine adjuvants, such as alum, elicit suboptimal CD8+ T cell responses. To address this major challenge in vaccine development, various nanoparticle systems have been engineered to mimic features of pathogens to improve antigen delivery to draining lymph nodes and increase antigen uptake by antigen-presenting cells, leading to new vaccine formulations optimized for induction of antigen-specific CD8+ T cell responses. In this article, we describe the synthesis of a “pathogen-mimicking” nanoparticle system, termed interbilayer-crosslinked multilamellar vesicles (ICMVs) that can serve as an effective vaccine carrier for co-delivery of subunit antigens and immunostimulatory agents and elicitation of potent cytotoxic CD8+ T lymphocyte (CTL) responses. We describe methods for characterizing hydrodynamic size and surface charge of vaccine nanoparticles with dynamic light scattering and zeta potential analyzer and present a confocal microscopy-based procedure to analyze nanoparticle-mediated antigen delivery to draining lymph nodes. Furthermore, we show a new bioluminescence whole-animal imaging technique utilizing adoptive transfer of luciferase-expressing, antigen-specific CD8+ T cells into recipient mice, followed by nanoparticle vaccination, which permits non-invasive interrogation of expansion and trafficking patterns of CTLs in real time. We also describe tetramer staining and flow cytometric analysis of peripheral blood mononuclear cells for longitudinal quantification of endogenous T cell responses in mice vaccinated with nanoparticles.
Immunology, Issue 98, nanoparticle, vaccine, biomaterial, subunit antigen, adjuvant, cytotoxic CD8+ T lymphocyte, whole animal imaging, tetramer staining, and lymph node
52771
Play Button
Utilizing the Antigen Capsid-Incorporation Strategy for the Development of Adenovirus Serotype 5-Vectored Vaccine Approaches
Authors: Linlin Gu, Anitra L. Farrow, Alexandre Krendelchtchikov, Qiana L. Matthews.
Institutions: University of Alabama at Birmingham, University of Alabama at Birmingham.
Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines.
Immunology, Issue 99, Antigen Capsid-Incorporation strategy, transgene method, Adenovirus (Ad), vaccine, capsid proteins, dual modification, pre-existing immunity (PEI)
52655
Play Button
Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care
Authors: Katherine Riccione, Carter M. Suryadevara, David Snyder, Xiuyu Cui, John H. Sampson, Luis Sanchez-Perez.
Institutions: Duke University, Duke University, Duke University.
Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.
Immunology, Issue 96, Tumor immunotherapy, glioblastoma, chimeric antigen receptor, adoptive transfer, temozolomide, radiotherapy
52397
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Isolation and Analysis of Brain-sequestered Leukocytes from Plasmodium berghei ANKA-infected Mice
Authors: Victoria Ryg-Cornejo, Lisa J. Ioannidis, Diana S. Hansen.
Institutions: The Walter and Eliza Hall Institute of Medical Research.
We describe a method for isolation and characterization of adherent inflammatory cells from brain blood vessels of P. berghei ANKA-infected mice. Infection of susceptible mouse-strains with this parasite strain results in the induction of experimental cerebral malaria, a neurologic syndrome that recapitulates certain important aspects of Plasmodium falciparum-mediated severe malaria in humans 1,2 . Mature forms of blood-stage malaria express parasitic proteins on the surface of the infected erythrocyte, which allows them to bind to vascular endothelial cells. This process induces obstructions in blood flow, resulting in hypoxia and haemorrhages 3 and also stimulates the recruitment of inflammatory leukocytes to the site of parasite sequestration. Unlike other infections, i.e neutrotopic viruses4-6, both malaria-parasitized red blood cells (pRBC) as well as associated inflammatory leukocytes remain sequestered within blood vessels rather than infiltrating the brain parenchyma. Thus to avoid contamination of sequestered leukocytes with non-inflammatory circulating cells, extensive intracardial perfusion of infected-mice prior to organ extraction and tissue processing is required in this procedure to remove the blood compartment. After perfusion, brains are harvested and dissected in small pieces. The tissue structure is further disrupted by enzymatic treatment with Collagenase D and DNAse I. The resulting brain homogenate is then centrifuged on a Percoll gradient that allows separation of brain-sequestered leukocytes (BSL) from myelin and other tissue debris. Isolated cells are then washed, counted using a hemocytometer and stained with fluorescent antibodies for subsequent analysis by flow cytometry. This procedure allows comprehensive phenotypic characterization of inflammatory leukocytes migrating to the brain in response to various stimuli, including stroke as well as viral or parasitic infections. The method also provides a useful tool for assessment of novel anti-inflammatory treatments in pre-clinical animal models.
Immunology, Issue 71, Infection, Infectious Diseases, Pathology, Hematology, Molecular Biology, Cellular Biology, Mouse, Brain, Intravascular inflammation, leukocytes, Plasmodium berghei, parasite, malaria, animal model, flow cytometry
50112
Play Button
Selection of Plasmodium falciparum Parasites for Cytoadhesion to Human Brain Endothelial Cells
Authors: Antoine Claessens, J. Alexandra Rowe.
Institutions: University of Edinburgh.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain2-4. This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in 5). Sequestration is also found in most microvascular tissues of the human body2, 3. The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier6. However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs7.
Immunology, Issue 59, Plasmodium falciparum, cerebral malaria, cytoadherence, sequestration, endothelial cell, HBEC-5i
3122
Play Button
Intravital Microscopy of the Mouse Brain Microcirculation using a Closed Cranial Window
Authors: Pedro Cabrales, Leonardo J. M. Carvalho.
Institutions: University of California, San Diego, La Jolla Bioengineering Institute.
This experimental model was designed to assess the mouse pial microcirculation during acute and chronic, physiological and pathophysiological hemodynamic, inflammatory and metabolic conditions, using in vivo fluorescence microscopy. A closed cranial window is placed over the left parieto-occipital cortex of the mice. Local microcirculation is recorded in real time through the window using epi and fluorescence illumination, and measurements of vessels diameters and red blood cell (RBC) velocities are performed. RBC velocity is measured using real-time cross-correlation and/or fluorescent-labeled erythrocytes. Leukocyte and platelet adherence to pial vessels and assessment of perfusion and vascular leakage are made with the help of fluorescence-labeled markers such as Albumin-FITC and anti-CD45-TxR antibodies. Microcirculation can be repeatedly video-recorded over several days. We used for the first time the close window brain intravital microscopy to study the pial microcirculation to follow dynamic changes during the course of Plasmodium berghei ANKA infection in mice and show that expression of CM is associated with microcirculatory dysfunctions characterized by vasoconstriction, profound decrease in blood flow and eventually vascular collapse.
Neuroscience, Issue 45, Brain hemodynamics, blood flow, microcirculation, vascular morphology, leukocyte adherence, cerebral malaria
2184
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
233
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
231
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
225
Play Button
Application of Long-term cultured Interferon-γ Enzyme-linked Immunospot Assay for Assessing Effector and Memory T Cell Responses in Cattle
Authors: Mayara F. Maggioli, Mitchell V. Palmer, H. Martin Vordermeier, Adam O. Whelan, James M. Fosse, Brian J. Nonnecke, W. Ray Waters.
Institutions: United States Department of Agriculture, Iowa State University, UK Veterinary Laboratories Agency, United States Department of Agriculture.
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primarily effector and effector memory T cell responses. Central memory T cell responses by CD4+ T cells to vaccination, on the other hand, may be used to predict vaccine efficacy, as demonstrated with simian immunodeficiency virus infection of non-human primates, tuberculosis in mice, and malaria in humans. Several studies with mice and humans as well as unpublished data on cattle, have demonstrated that interferon-γ ELISPOT assays measure central memory T cell responses. With this assay, peripheral blood mononuclear cells are cultured in decreasing concentration of antigen for 10 to 14 days (long-term culture), allowing effector responses to peak and wane; facilitating central memory T cells to differentiate and expand within the culture.
Immunology, Issue 101, Immunology, bovine tuberculosis, CD4 T cells, vaccine.
52833
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.