JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Community Structure and Survival of Tertiary Relict Thuja sutchuenensis (Cupressaceae) in the Subtropical Daba Mountains, Southwestern China.
PUBLISHED: 05-01-2015
A rare coniferous Tertiary relict tree species, Thuja sutchuenensis Franch, has survived in the Daba Mountains of southwestern China. It was almost eliminated by logging during the past century. We measured size and age structures and interpreted regeneration dynamics of stands of the species in a variety of topographic contexts and community associations. Forest communities containing T. sutchuenensis were of three types: (1) the Thuja community dominated by T. sutchuenensis, growing on cliffs; (2) the Thuja-Quercus-Cyclobalanopsis community dominated by T. sutchuenensis, Quercus engleriana and Cyclobalanopsis oxyodon, along with Fagus engleriana and Carpinus fargesiana, on steep slopes; (3) the Thuja-Tsuga-Quercus community dominated by T. sutchuenensis, Tsuga chinensis, and Quercus spinosa, on crest ridges. The established seedlings/saplings were found in limestone crevices, on scarred cliff-faces, cliff-edges, fallen logs, canopy gaps and forest margins. The radial growth rate was 0.5-1.1 mm per year. Its growth forms were distorted. It had strong sprouting ability after disturbances. The T. sutchuenensis population thrives on cliffs where there is little competition from other species because of harsh conditions and rockslide disturbances. It is shade-intolerant but stress-tolerant. Its regeneration has depended on natural disturbances.
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Published: 03-13-2014
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
23 Related JoVE Articles!
Play Button
Split-and-pool Synthesis and Characterization of Peptide Tertiary Amide Library
Authors: Yu Gao, Thomas Kodadek.
Institutions: The Scripps Research Institute.
Peptidomimetics are great sources of protein ligands. The oligomeric nature of these compounds enables us to access large synthetic libraries on solid phase by using combinatorial chemistry. One of the most well studied classes of peptidomimetics is peptoids. Peptoids are easy to synthesize and have been shown to be proteolysis-resistant and cell-permeable. Over the past decade, many useful protein ligands have been identified through screening of peptoid libraries. However, most of the ligands identified from peptoid libraries do not display high affinity, with rare exceptions. This may be due, in part, to the lack of chiral centers and conformational constraints in peptoid molecules. Recently, we described a new synthetic route to access peptide tertiary amides (PTAs). PTAs are a superfamily of peptidomimetics that include but are not limited to peptides, peptoids and N-methylated peptides. With side chains on both α-carbon and main chain nitrogen atoms, the conformation of these molecules are greatly constrained by sterical hindrance and allylic 1,3 strain. (Figure 1) Our study suggests that these PTA molecules are highly structured in solution and can be used to identify protein ligands. We believe that these molecules can be a future source of high-affinity protein ligands. Here we describe the synthetic method combining the power of both split-and-pool and sub-monomer strategies to synthesize a sample one-bead one-compound (OBOC) library of PTAs.
Chemistry, Issue 88, Split-and-pool synthesis, peptide tertiary amide, PTA, peptoid, high-throughput screening, combinatorial library, solid phase, triphosgene (BTC), one-bead one-compound, OBOC
Play Button
A Technique to Screen American Beech for Resistance to the Beech Scale Insect (Cryptococcus fagisuga Lind.)
Authors: Jennifer L. Koch, David W. Carey.
Institutions: US Forest Service.
Beech bark disease (BBD) results in high levels of initial mortality, leaving behind survivor trees that are greatly weakened and deformed. The disease is initiated by feeding activities of the invasive beech scale insect, Cryptococcus fagisuga, which creates entry points for infection by one of the Neonectria species of fungus. Without scale infestation, there is little opportunity for fungal infection. Using scale eggs to artificially infest healthy trees in heavily BBD impacted stands demonstrated that these trees were resistant to the scale insect portion of the disease complex1. Here we present a protocol that we have developed, based on the artificial infestation technique by Houston2, which can be used to screen for scale-resistant trees in the field and in smaller potted seedlings and grafts. The identification of scale-resistant trees is an important component of management of BBD through tree improvement programs and silvicultural manipulation.
Environmental Sciences, Issue 87, Forestry, Insects, Disease Resistance, American beech, Fagus grandifolia, beech scale, Cryptococcus fagisuga, resistance, screen, bioassay
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
Investigating the Microbial Community in the Termite Hindgut - Interview
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter explains why the termite-gut microbial community is an excellent system for studying the complex interactions between microbes. The symbiotic relationship existing between the host insect and lignocellulose-degrading gut microbes is explained, as well as the industrial uses of these microbes for degrading plant biomass and generating biofuels.
Microbiology, issue 4, microbial community, diversity
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
A Technical Perspective in Modern Tree-ring Research - How to Overcome Dendroecological and Wood Anatomical Challenges
Authors: Holger Gärtner, Paolo Cherubini, Patrick Fonti, Georg von Arx, Loïc Schneider, Daniel Nievergelt, Anne Verstege, Alexander Bast, Fritz H. Schweingruber, Ulf Büntgen.
Institutions: Swiss Federal Research Institute WSL.
Dendroecological research uses information stored in tree rings to understand how single trees and even entire forest ecosystems responded to environmental changes and to finally reconstruct such changes. This is done by analyzing growth variations back in time and correlating various plant-specific parameters to (for example) temperature records. Integrating wood anatomical parameters in these analyses would strengthen reconstructions, even down to intra-annual resolution. We therefore present a protocol on how to sample, prepare, and analyze wooden specimen for common macroscopic analyses, but also for subsequent microscopic analyses. Furthermore we introduce a potential solution for analyzing digital images generated from common small and large specimens to support time-series analyses. The protocol presents the basic steps as they currently can be used. Beyond this, there is an ongoing need for the improvement of existing techniques, and development of new techniques, to record and quantify past and ongoing environmental processes. Traditional wood anatomical research needs to be expanded to include ecological information to this field of research. This would support dendro-scientists who intend to analyze new parameters and develop new methodologies to understand the short and long term effects of specific environmental factors on the anatomy of woody plants.
Environmental Sciences, Issue 97, Cell parameters, dendroecology, image analysis, micro sectioning, microtomes, sample preparation, wood anatomy
Play Button
The Use of High-resolution Infrared Thermography (HRIT) for the Study of Ice Nucleation and Ice Propagation in Plants
Authors: Michael Wisniewski, Gilbert Neuner, Lawrence V. Gusta.
Institutions: Agricultural Research Service (USDA-ARS), Kearneysville, WV, University of Innsbruck, University of Saskatechewan.
Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.
Environmental Sciences, Issue 99, Freeze avoidance, supercooling, ice nucleation active bacteria, frost tolerance, ice crystallization, antifreeze proteins, intrinsic nucleation, extrinsic nucleation, heterogeneous nucleation, homogeneous nucleation, differential thermal analysis
Play Button
A Venturi Effect Can Help Cure Our Trees
Authors: Lucio Montecchio.
Institutions: Unversity of Padova.
In woody plants, xylem sap moves upwards through the vessels due to a decreasing gradient of water potential from the groundwater to the foliage. According to these factors and their dynamics, small amounts of sap-compatible liquids (i.e. pesticides) can be injected into the xylem system, reaching their target from inside. This endotherapic method, called "trunk injection" or "trunk infusion" (depending on whether the user supplies an external pressure or not), confines the applied chemicals only within the target tree, thereby making it particularly useful in urban situations. The main factors limiting wider use of the traditional drilling methods are related to negative side effects of the holes that must be drilled around the trunk circumference in order to gain access to the xylem vessels beneath the bark. The University of Padova (Italy) recently developed a manual, drill-free instrument with a small, perforated blade that enters the trunk by separating the woody fibers with minimal friction. Furthermore, the lenticular shaped blade reduces the vessels' cross section, increasing sap velocity and allowing the natural uptake of an external liquid up to the leaves, when transpiration rate is substantial. Ports partially close soon after the removal of the blade due to the natural elasticity and turgidity of the plant tissues, and the cambial activity completes the healing process in few weeks.
Environmental Sciences, Issue 80, Trunk injection, systemic injection, xylematic injection, endotherapy, sap flow, Bernoulli principle, plant diseases, pesticides, desiccants
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
Play Button
Microbial Communities in Nature and Laboratory - Interview
Authors: Edward F. DeLong.
Institutions: MIT - Massachusetts Institute of Technology.
Microbiology, issue 4, microbial community, biofilm, genome
Play Button
Biology of Microbial Communities - Interview
Authors: Roberto Kolter.
Institutions: Harvard Medical School.
Microbiology, issue 4, microbial community, DNA, extraction, gut, termit
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
Depletion of Ribosomal RNA for Mosquito Gut Metagenomic RNA-seq
Authors: Phanidhar Kukutla, Matthew Steritz, Jiannong Xu.
Institutions: New Mexico State University.
The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.
Genetics, Issue 74, Infection, Infectious Diseases, Molecular Biology, Cellular Biology, Microbiology, Genomics, biology (general), genetics (animal and plant), life sciences, Eukaryota, Bacteria, metagenomics, metatranscriptome, RNA-seq, rRNA depletion, mRNA enrichment, mosquito gut microbiome, RNA, DNA, sequencing
Play Button
Cryosectioning Yeast Communities for Examining Fluorescence Patterns
Authors: Babak Momeni, Wenying Shou.
Institutions: Fred Hutchinson Cancer Research Center.
Microbes typically live in communities. The spatial organization of cells within a community is believed to impact the survival and function of the community1. Optical sectioning techniques, including confocal and two-photon microscopy, have proven useful for observing spatial organization of bacterial and archaeal communities2,3. A combination of confocal imaging and physical sectioning of yeast colonies has revealed internal organization of cells4. However, direct optical sectioning using confocal or two-photon microscopy has been only able to reach a few cell layers deep into yeast colonies. This limitation is likely because of strong scattering of light from yeast cells4. Here, we present a method based on fixing and cryosectioning to obtain spatial distribution of fluorescent cells within Saccharomyces cerevisiae communities. We use methanol as the fixative agent to preserve the spatial distribution of cells. Fixed communities are infiltrated with OCT compound, frozen, and cryosectioned in a cryostat. Fluorescence imaging of the sections reveals the internal organization of fluorescent cells within the community. Examples of yeast communities consisting of strains expressing red and green fluorescent proteins demonstrate the potentials of the cryosectioning method to reveal the spatial distribution of fluorescent cells as well as that of gene expression within yeast colonies2,3. Even though our focus has been on Saccharomyces cerevisiae communities, the same method can potentially be applied to examine other microbial communities.
Microbiology, Issue 70, Molecular Biology, Cellular Biology, Basic Protocols, Yeasts, Saccharomyces cerevisiae, Clinical Laboratory Techniques, Cytological Techniques, Environmental Microbiology, Investigative Techniques, Life Sciences, cryosectioning, sectioning, cryotome, fixing, microbial community, yeast colonies, Saccharomyces cerevisiae, community interactions
Play Button
Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature
Authors: Andrew J. McElrone, Brendan Choat, Dilworth Y. Parkinson, Alastair A. MacDowell, Craig R. Brodersen.
Institutions: U.S. Department of Agriculture, University of California - Davis, University of Western Sydney, Lawrence Berkeley National Lab, University of Florida .
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function.
Plant Biology, Issue 74, Cellular Biology, Molecular Biology, Biophysics, Structural Biology, Physics, Environmental Sciences, Agriculture, botany, environmental effects (biological, animal and plant), plants, radiation effects (biological, animal and plant), CT scans, advanced visualization techniques, xylem networks, plant vascular function, synchrotron, x-ray micro-tomography, ALS 8.3.2, xylem, phloem, tomography, imaging
Play Button
Recombineering Homologous Recombination Constructs in Drosophila
Authors: Arnaldo Carreira-Rosario, Shane Scoggin, Nevine A. Shalaby, Nathan David Williams, P. Robin Hiesinger, Michael Buszczak.
Institutions: University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas.
The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner.
Genetics, Issue 77, Bioengineering, Molecular Biology, Biomedical Engineering, Physiology, Drosophila melanogaster, genetics (animal and plant), Recombineering, Drosophila, Homologous Recombination, Knock-out, recombination, genetic engineering, gene targeting, gene, genes, DNA, PCR, Primers, sequencing, animal model
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Studying Pancreatic Cancer Stem Cell Characteristics for Developing New Treatment Strategies
Authors: Enza Lonardo, Michele Cioffi, Patricia Sancho, Shanthini Crusz, Christopher Heeschen.
Institutions: Spanish National Cancer Research Center, Institute for Research in Biomedicine (IRB Barcelona), Queen Mary University of London.
Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors 1,2. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., NCT01210911, NCT01167738, and NCT01488552). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in vivo validation to eliminate false discoveries.
Medicine, Issue 100, Pancreatic ductal adenocarcinoma, cancer stem cells, spheres, metformin (met), metabolism
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.