JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Translational Activation of Oskar mRNA: Reevaluation of the Role and Importance of a 5' Regulatory Element.
PUBLISHED: 05-05-2015
Local translation of oskar (osk) mRNA at the posterior pole of the Drosophila oocyte is essential for axial patterning of the embryo, and is achieved by a program of translational repression, mRNA localization, and translational activation. Multiple forms of repression are used to prevent Oskar protein from accumulating at sites other than the oocyte posterior. Activation is mediated by several types of cis-acting elements, which presumably control different forms of activation. We characterize a 5' element, positioned in the coding region for the Long Osk isoform and in the extended 5' UTR for translation of the Short Osk isoform. This element was previously thought to be essential for osk mRNA translation, with a role in posterior-specific release from repression. From our work, which includes assays which separate the effects of mutations on RNA regulatory elements and protein coding capacity, we find that the element is not essential, and conclude that there is no evidence supporting a role for the element only at the posterior of the oocyte. The 5' element has a redundant role, and is only required when Long Osk is not translated from the same mRNA. Mutations in the element do disrupt the anchoring function of Long Osk protein through their effects on the amino acid sequence, a confounding influence on interpretation of previous experiments.
Authors: Ian Q Whishaw, Paul Whishaw, Bogdan Gorny.
Published: 08-08-2008
Skilled reaching for food is an evolutionary ancient act and is displayed by many animal species, including those in the sister clades of rodents and primates. The video describes a test situation that allows filming of repeated acts of reaching for food by the rat that has been mildly food deprived. A rat is trained to reach through a slot in a holding box for food pellet that it grasps and then places in its mouth for eating. Reaching is accomplished in the main by proximally driven movements of the limb but distal limb movements are used for pronating the paw, grasping the food, and releasing the food into the mouth. Each reach is divided into at least 10 movements of the forelimb and the reaching act is facilitated by postural adjustments. Each of the movements is described and examples of the movements are given from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Because the reaching act for the rat is very similar to that displayed by humans and nonhuman primates, the scale can be used for comparative purposes. from a number of viewing perspectives. By rating each movement element on a 3-point scale, the reach can be quantified. A number of studies have demonstrated that the movement elements are altered by motor system damage, including damage to the motor cortex, basal ganglia, brainstem, and spinal cord. The movements are also altered in neurological conditions that can be modeled in the rat, including Parkinson's disease and Huntington's disease. Thus, the rating scale is useful for quantifying motor impairments and the effectiveness of neural restoration and rehabilitation. Experiments on animals were performed in accordance with the guidelines and regulations set forth by the University of Lethbridge Animal Care Committee in accordance with the regulations of the Canadian Council on Animal Care.
25 Related JoVE Articles!
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
Play Button
The Xenopus Oocyte Cut-open Vaseline Gap Voltage-clamp Technique With Fluorometry
Authors: Michael W. Rudokas, Zoltan Varga, Angela R. Schubert, Alexandra B. Asaro, Jonathan R. Silva.
Institutions: Washington University in St. Louis.
The cut-open oocyte Vaseline gap (COVG) voltage clamp technique allows for analysis of electrophysiological and kinetic properties of heterologous ion channels in oocytes. Recordings from the cut-open setup are particularly useful for resolving low magnitude gating currents, rapid ionic current activation, and deactivation. The main benefits over the two-electrode voltage clamp (TEVC) technique include increased clamp speed, improved signal-to-noise ratio, and the ability to modulate the intracellular and extracellular milieu. Here, we employ the human cardiac sodium channel (hNaV1.5), expressed in Xenopus oocytes, to demonstrate the cut-open setup and protocol as well as modifications that are required to add voltage clamp fluorometry capability. The properties of fast activating ion channels, such as hNaV1.5, cannot be fully resolved near room temperature using TEVC, in which the entirety of the oocyte membrane is clamped, making voltage control difficult. However, in the cut-open technique, isolation of only a small portion of the cell membrane allows for the rapid clamping required to accurately record fast kinetics while preventing channel run-down associated with patch clamp techniques. In conjunction with the COVG technique, ion channel kinetics and electrophysiological properties can be further assayed by using voltage clamp fluorometry, where protein motion is tracked via cysteine conjugation of extracellularly applied fluorophores, insertion of genetically encoded fluorescent proteins, or the incorporation of unnatural amino acids into the region of interest1. This additional data yields kinetic information about voltage-dependent conformational rearrangements of the protein via changes in the microenvironment surrounding the fluorescent molecule.
Developmental Biology, Issue 85, Voltage clamp, Cut-open, Oocyte, Voltage Clamp Fluorometry, Sodium Channels, Ionic Currents, Xenopus laevis
Play Button
Analysis of Translation Initiation During Stress Conditions by Polysome Profiling
Authors: Laëtitia Coudert, Pauline Adjibade, Rachid Mazroui.
Institutions: Laval University, CHU de Quebec Research Center.
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.
Cellular Biology, Issue 87, Translation initiation, polysome profile, sucrose gradient, protein and RNA isolation, stress conditions
Play Button
Isolation of mRNAs Associated with Yeast Mitochondria to Study Mechanisms of Localized Translation
Authors: Chen Lesnik, Yoav Arava.
Institutions: Technion - Israel Institute of Technology.
Most of mitochondrial proteins are encoded in the nucleus and need to be imported into the organelle. Import may occur while the protein is synthesized near the mitochondria. Support for this possibility is derived from recent studies, in which many mRNAs encoding mitochondrial proteins were shown to be localized to the mitochondria vicinity. Together with earlier demonstrations of ribosomes’ association with the outer membrane, these results suggest a localized translation process. Such localized translation may improve import efficiency, provide unique regulation sites and minimize cases of ectopic expression. Diverse methods have been used to characterize the factors and elements that mediate localized translation. Standard among these is subcellular fractionation by differential centrifugation. This protocol has the advantage of isolation of mRNAs, ribosomes and proteins in a single procedure. These can then be characterized by various molecular and biochemical methods. Furthermore, transcriptomics and proteomics methods can be applied to the resulting material, thereby allow genome-wide insights. The utilization of yeast as a model organism for such studies has the advantages of speed, costs and simplicity. Furthermore, the advanced genetic tools and available deletion strains facilitate verification of candidate factors.
Biochemistry, Issue 85, mitochondria, mRNA localization, Yeast, S. cerevisiae, microarray, localized translation, biochemical fractionation
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells
Authors: Meltem Avci-Adali, Andreas Behring, Heidrun Steinle, Timea Keller, Stefanie Krajeweski, Christian Schlensak, Hans P. Wendel.
Institutions: University Hospital Tuebingen.
The exogenous delivery of coding synthetic messenger RNA (mRNA) for induction of protein synthesis in desired cells has enormous potential in the fields of regenerative medicine, basic cell biology, treatment of diseases, and reprogramming of cells. Here, we describe a step by step protocol for generation of modified mRNA with reduced immune activation potential and increased stability, quality control of produced mRNA, transfection of cells with mRNA and verification of the induced protein expression by flow cytometry. Up to 3 days after a single transfection with eGFP mRNA, the transfected HEK293 cells produce eGFP. In this video article, the synthesis of eGFP mRNA is described as an example. However, the procedure can be applied for production of other desired mRNA. Using the synthetic modified mRNA, cells can be induced to transiently express the desired proteins, which they normally would not express.
Genetics, Issue 93, mRNA synthesis, in vitro transcription, modification, transfection, protein synthesis, eGFP, flow cytometry
Play Button
Expression of Fluorescent Proteins in Branchiostoma lanceolatum by mRNA Injection into Unfertilized Oocytes
Authors: Estelle Hirsinger, João Emanuel Carvalho, Christine Chevalier, Georges Lutfalla, Jean-François Nicolas, Nadine Peyriéras, Michael Schubert.
Institutions: Institut Pasteur, Sorbonne Universités, Centre de Recherche en Cancérologie de Marseille, CNRS UMR5235/DAA/cc107/Université Montpellier II, CNRS-NED, Institut de Neurobiologie Alfred Fessard.
We report here a robust and efficient protocol for the expression of fluorescent proteins after mRNA injection into unfertilized oocytes of the cephalochordate amphioxus, Branchiostoma lanceolatum. We use constructs for membrane and nuclear targeted mCherry and eGFP that have been modified to accommodate amphioxus codon usage and Kozak consensus sequences. We describe the type of injection needles to be used, the immobilization protocol for the unfertilized oocytes, and the overall injection set-up. This technique generates fluorescently labeled embryos, in which the dynamics of cell behaviors during early development can be analyzed using the latest in vivo imaging strategies. The development of a microinjection technique in this amphioxus species will allow live imaging analyses of cell behaviors in the embryo as well as gene-specific manipulations, including gene overexpression and knockdown. Altogether, this protocol will further consolidate the basal chordate amphioxus as an animal model for addressing questions related to the mechanisms of embryonic development and, more importantly, to their evolution.
Developmental Biology, Issue 95, Amphioxus, cephalochordate, gene expression vectors, in vivo imaging, microinjection protocol, model organism
Play Button
Electrophoretic Mobility Shift Assay (EMSA) for the Study of RNA-Protein Interactions: The IRE/IRP Example
Authors: Carine Fillebeen, Nicole Wilkinson, Kostas Pantopoulos.
Institutions: Jewish General Hospital, McGill University.
RNA/protein interactions are critical for post-transcriptional regulatory pathways. Among the best-characterized cytosolic RNA-binding proteins are iron regulatory proteins, IRP1 and IRP2. They bind to iron responsive elements (IREs) within the untranslated regions (UTRs) of several target mRNAs, thereby controlling the mRNAs translation or stability. IRE/IRP interactions have been widely studied by EMSA. Here, we describe the EMSA protocol for analyzing the IRE-binding activity of IRP1 and IRP2, which can be generalized to assess the activity of other RNA-binding proteins as well. A crude protein lysate containing an RNA-binding protein, or a purified preparation of this protein, is incubated with an excess of32 P-labeled RNA probe, allowing for complex formation. Heparin is added to preclude non-specific protein to probe binding. Subsequently, the mixture is analyzed by non-denaturing electrophoresis on a polyacrylamide gel. The free probe migrates fast, while the RNA/protein complex exhibits retarded mobility; hence, the procedure is also called “gel retardation” or “bandshift” assay. After completion of the electrophoresis, the gel is dried and RNA/protein complexes, as well as free probe, are detected by autoradiography. The overall goal of the protocol is to detect and quantify IRE/IRP and other RNA/protein interactions. Moreover, EMSA can also be used to determine specificity, binding affinity, and stoichiometry of the RNA/protein interaction under investigation.
Biochemistry, Issue 94, RNA metabolism, mRNA translation, post-transcriptional gene regulation, mRNA stability, IRE, IRP1, IRP2, iron metabolism, ferritin, transferrin receptor
Play Button
Assessment of Selective mRNA Translation in Mammalian Cells by Polysome Profiling
Authors: Mame Daro Faye, Tyson E Graber, Martin Holcik.
Institutions: University of Ottawa, Montreal Neurological Institute, University of Ottawa.
Regulation of protein synthesis represents a key control point in cellular response to stress. In particular, discreet RNA regulatory elements were shown to allow to selective translation of specific mRNAs, which typically encode for proteins required for a particular stress response. Identification of these mRNAs, as well as the characterization of regulatory mechanisms responsible for selective translation has been at the forefront of molecular biology for some time. Polysome profiling is a cornerstone method in these studies. The goal of polysome profiling is to capture mRNA translation by immobilizing actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts and poorly translated ones. These can then be further characterized by traditional biochemical and molecular biology methods. Importantly, combining polysome profiling with high throughput genomic approaches allows for a large scale analysis of translational regulation.
Cellular Biology, Issue 92, cellular stress, translation initiation, internal ribosome entry site, polysome, RT-qPCR, gradient
Play Button
Detection of miRNA Targets in High-throughput Using the 3'LIFE Assay
Authors: Justin M. Wolter, Kasuen Kotagama, Cody S. Babb, Marco Mangone.
Institutions: Arizona State University, Arizona State University.
Luminescent Identification of Functional Elements in 3’UTRs (3’LIFE) allows the rapid identification of targets of specific miRNAs within an array of hundreds of queried 3’UTRs. Target identification is based on the dual-luciferase assay, which detects binding at the mRNA level by measuring translational output, giving a functional readout of miRNA targeting. 3’LIFE uses non-proprietary buffers and reagents, and publically available reporter libraries, making genome-wide screens feasible and cost-effective. 3’LIFE can be performed either in a standard lab setting or scaled up using liquid handling robots and other high-throughput instrumentation. We illustrate the approach using a dataset of human 3’UTRs cloned in 96-well plates, and two test miRNAs, let-7c and miR-10b. We demonstrate how to perform DNA preparation, transfection, cell culture and luciferase assays in 96-well format, and provide tools for data analysis. In conclusion 3'LIFE is highly reproducible, rapid, systematic, and identifies high confidence targets.
Molecular Biology, Issue 99, microRNA, luciferase assay, 3' untranslated region, high-throughput, transfection, post-transcriptional gene regulation, cancer
Play Button
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Authors: Andrew J. Spracklen, Tina L. Tootle.
Institutions: University of Iowa Carver College of Medicine.
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis.
Developmental Biology, Issue 82, Drosophila melanogaster, Organ Culture Techniques, Gene Expression Profiling, Microscopy, Confocal, Cell Biology, Genetic Research, Molecular Biology, Pharmacology, Drosophila, oogenesis, follicle, live-imaging, gene expression, development
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Visualizing RNA Localization in Xenopus Oocytes
Authors: James A. Gagnon, Kimberly L. Mowry.
Institutions: Brown University.
RNA localization is a conserved mechanism of establishing cell polarity. Vg1 mRNA localizes to the vegetal pole of Xenopus laevis oocytes and acts to spatially restrict gene expression of Vg1 protein. Tight control of Vg1 distribution in this manner is required for proper germ layer specification in the developing embryo. RNA sequence elements in the 3' UTR of the mRNA, the Vg1 localization element (VLE) are required and sufficient to direct transport. To study the recognition and transport of Vg1 mRNA in vivo, we have developed an imaging technique that allows extensive analysis of trans-factor directed transport mechanisms via a simple visual readout. To visualize RNA localization, we synthesize fluorescently labeled VLE RNA and microinject this transcript into individual oocytes. After oocyte culture to allow transport of the injected RNA, oocytes are fixed and dehydrated prior to imaging by confocal microscopy. Visualization of mRNA localization patterns provides a readout for monitoring the complete pathway of RNA transport and for identifying roles in directing RNA transport for cis-acting elements within the transcript and trans-acting factors that bind to the VLE (Lewis et al., 2008, Messitt et al., 2008). We have extended this technique through co-localization with additional RNAs and proteins (Gagnon and Mowry, 2009, Messitt et al., 2008), and in combination with disruption of motor proteins and the cytoskeleton (Messitt et al., 2008) to probe mechanisms underlying mRNA localization.
Developmental Biology, Issue 35, RNA, Developmental Biology, Microinjection, RNA Localization, Xenopus, oocytes, VLE
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
Play Button
Quantitative Comparison of cis-Regulatory Element (CRE) Activities in Transgenic Drosophila melanogaster
Authors: William A. Rogers, Thomas M. Williams.
Institutions: University of Dayton, University of Dayton.
Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism′s program for development1, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution2-4. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation5,6. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE′s activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster7 has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites8-10. This capability has made the quantitative measurement of gene and, relevant here, CRE activity11-13 feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at specialized transgene injection protocols. Here, we present a general protocol to quantitatively evaluate a CRE′s activity, and show how this approach can be used to measure the effects of an introduced mutation on a CRE′s activity and to compare the activities of orthologous CREs. Although the examples given are for a CRE active during fruit fly metamorphosis, the approach can be applied to other developmental stages, fruit fly species, or model organisms. Ultimately, a more widespread use of this approach to study CREs should advance an understanding of regulatory logic and how logic can vary and evolve.
Developmental Biology, Issue 58, Cis-regulatory element, CRE, cis-regulatory module, enhancer, site-specific integration, reporter transgenes, confocal microscopy, regulatory logic, transcription factors, binding sites, Drosophila melanogaster, Drosophila
Play Button
Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy
Authors: Birte Kalveram, Olga Lihoradova, Sabarish V. Indran, Tetsuro Ikegami.
Institutions: University of Texas Medical Branch.
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants1, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain2,3 as well as wild-type RVFV strains 4-6, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA3, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA7,8 and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level.9,10 IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs)11, which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. . Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response12-14. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
Immunology, Issue 57, Rift Valley fever virus, reverse genetics, NSs, MP-12, vaccine development
Play Button
Preparing Individual Drosophila Egg Chambers for Live Imaging
Authors: Timothy T. Weil, Richard M. Parton, Ilan Davis.
Institutions: University of Oxford .
Live cell imaging is an important technique applied to a number of Drosophila tissues used as models to investigate topics such as axis specification, cell differentiation and organogenesis 1. Correct preparation of the experimental samples is a crucial, often neglected, step. The goal of preparation is to ensure physiological relevance and to establish optimal imaging conditions. To maintain tissue viability, it is critical to avoid dehydration, hypoxia, overheating or medium deterioration 2. The Drosophila egg chamber is a well established system for examining questions relating, but not limited, to body patterning, mRNA localization and cytoskeletal organization 3,4. For early- and mid-stage egg chambers, mounting in halocarbon oil is good for survival in that it allows free diffusion of oxygen, prevents dehydration and hypoxia and has superb optical properties for microscopy. Imaging of fluorescent proteins is possible through the introduction of transgenes into the egg chamber or physical injection of labeled RNA, protein or antibodies 5-7. For example, addition of MS2 constructs to the genome of animals enables real time observation of mRNAs in the oocyte 8. These constructs allow for in vivo labeling of mRNA through utilization of the MS2 bacteriophage RNA stem loop interaction with its coat protein 9. Here, we present a protocol for the extraction of ovaries as well as isolating individual ovarioles and egg chambers from the female Drosophila. For a detailed description of Drosophila oogenesis see Allan C. Spradling (1993, reprinted 2009) 10.
Molecular Biology, Issue 60, Drosophila oocytes, wide-field microscopy, cytoskeleton, RNA injection, mRNA localization
Play Button
Hybridization in situ of Salivary Glands, Ovaries, and Embryos of Vector Mosquitoes
Authors: Jennifer Juhn, Anthony A. James.
Institutions: University of California, Irvine, University of California, Irvine.
Mosquitoes are vectors for a diverse set of pathogens including arboviruses, protozoan parasites and nematodes. Investigation of transcripts and gene regulators that are expressed in tissues in which the mosquito host and pathogen interact, and in organs involved in reproduction are of great interest for strategies to reduce mosquito-borne disease transmission and disrupt egg development. A number of tools have been employed to study and validate the temporal and tissue-specific regulation of gene expression. Here, we describe protocols that have been developed to obtain spatial information, which enhances our understanding of where specific genes are expressed and their products accumulate. The protocol described has been used to validate expression and determine accumulation patterns of transcripts in tissues related to mosquito-borne pathogen transmission, such as female salivary glands, as well as subcellular compartments of ovaries and embryos, which relate to mosquito reproduction and development. The following procedures represent an optimized methodology that improves the efficiency of various steps in the protocol without loss of target-specific hybridization signals. Guidelines for RNA probe preparation, dissection of soft tissues and the general procedure for fixation and hybridization are described in Part A, while steps specific for the collection, fixation, pre-hybridization and hybridization of mosquito embryos are detailed in Part B.
Immunology, Issue 64, Molecular Biology, Biochemistry, Genetics, Developmental Biology, Hybridization in situ, RNA localization, salivary glands, ovary, embryo, mosquito
Play Button
Isolation of Ribosome Bound Nascent Polypeptides in vitro to Identify Translational Pause Sites Along mRNA
Authors: Sujata S. Jha, Anton A. Komar.
Institutions: Cleveland State University.
The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the messagefor review see 1. However, it's now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates1. Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others2. Codon bias is organism as well as tissue specific2,3. Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs4. Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes5-8. These pause sites can have functional impact on the protein expression, mRNA stability and protein foldingfor review see 9. Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding1,7,10,11. To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation. Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems6-8. This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the ribosomes results in increased amounts of nascent peptides of the corresponding sizes. In vitro transcribed mRNA is used for in vitro translational reactions in the presence of radioactively labeled amino acids to allow the detection of the nascent chains. In order to isolate ribosome bound nascent polypeptide complexes the translation reaction is layered on top of 30% glycerol solution followed by centrifugation. Nascent polypeptides in polysomal pellet are further treated with ribonuclease A and resolved by SDS PAGE. This technique can be potentially used for any protein and allows analysis of ribosome movement along mRNA and the detection of the major pause sites. Additionally, this protocol can be adapted to study factors and conditions that can alter ribosome movement and thus potentially can also alter the function/conformation of the protein.
Genetics, Issue 65, Molecular Biology, Ribosome, Nascent polypeptide, Co-translational protein folding, Synonymous codon usage, gene regulation
Play Button
Using SecM Arrest Sequence as a Tool to Isolate Ribosome Bound Polypeptides
Authors: Sujata S. Jha, Anton A. Komar.
Institutions: Cleveland State University.
Extensive research has provided ample evidences suggesting that protein folding in the cell is a co-translational process1-5. However, the exact pathway that polypeptide chain follows during co-translational folding to achieve its functional form is still an enigma. In order to understand this process and to determine the exact conformation of the co-translational folding intermediates, it is essential to develop techniques that allow the isolation of RNCs carrying nascent chains of predetermined sizes to allow their further structural analysis. SecM (secretion monitor) is a 170 amino acid E. coli protein that regulates expression of the downstream SecA (secretion driving) ATPase in the secM-secA operon6. Nakatogawa and Ito originally found that a 17 amino acid long sequence (150-FSTPVWISQAQGIRAGP-166) in the C-terminal region of the SecM protein is sufficient and necessary to cause stalling of SecM elongation at Gly165, thereby producing peptidyl-glycyl-tRNA stably bound to the ribosomal P-site7-9. More importantly, it was found that this 17 amino acid long sequence can be fused to the C-terminus of virtually any full-length and/or truncated protein thus allowing the production of RNCs carrying nascent chains of predetermined sizes7. Thus, when fused or inserted into the target protein, SecM stalling sequence produces arrest of the polypeptide chain elongation and generates stable RNCs both in vivo in E. coli cells and in vitro in a cell-free system. Sucrose gradient centrifugation is further utilized to isolate RNCs. The isolated RNCs can be used to analyze structural and functional features of the co-translational folding intermediates. Recently, this technique has been successfully used to gain insights into the structure of several ribosome bound nascent chains10,11. Here we describe the isolation of bovine Gamma-B Crystallin RNCs fused to SecM and generated in an in vitro translation system.
Molecular Biology, Issue 64, Ribosome, nascent polypeptides, co-translational protein folding, translational arrest, in vitro translation
Play Button
Visualization of Endoplasmic Reticulum Localized mRNAs in Mammalian Cells
Authors: Xianying A. Cui, Alexander F. Palazzo.
Institutions: University of Toronto.
In eukaryotes, most of the messenger RNAs (mRNAs) that encode secreted and membrane proteins are localized to the surface of the endoplasmic reticulum (ER). However, the visualization of these mRNAs can be challenging. This is especially true when only a fraction of the mRNA is ER-associated and their distribution to this organelle is obstructed by non-targeted (i.e. "free") transcripts. In order to monitor ER-associated mRNAs, we have developed a method in which cells are treated with a short exposure to a digitonin extraction solution that selectively permeabilizes the plasma membrane, and thus removes the cytoplasmic contents, while simultaneously maintaining the integrity of the ER. When this method is coupled with fluorescent in situ hybridization (FISH), one can clearly visualize ER-bound mRNAs by fluorescent microscopy. Using this protocol the degree of ER-association for either bulk poly(A) transcripts or specific mRNAs can be assessed and even quantified. In the process, one can use this assay to investigate the nature of mRNA-ER interactions.
Cellular Biology, Issue 70, Biochemistry, Genetics, Molecular Biology, Genomics, mRNA localization, RNA, digitonin extraction, cell fractionation, endoplasmic reticulum, secretion, microscopy, imaging, fluorescent in situ hybridization, FISH, cell biology
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Use of the TetON System to Study Molecular Mechanisms of Zebrafish Regeneration
Authors: Daniel Wehner, Christopher Jahn, Gilbert Weidinger.
Institutions: Ulm University.
The zebrafish has become a very important model organism for studying vertebrate development, physiology, disease, and tissue regeneration. A thorough understanding of the molecular and cellular mechanisms involved requires experimental tools that allow for inducible, tissue-specific manipulation of gene expression or signaling pathways. Therefore, we and others have recently adapted the TetON system for use in zebrafish. The TetON system facilitates temporally and spatially-controlled gene expression and we have recently used this tool to probe for tissue-specific functions of Wnt/beta–catenin signaling during zebrafish tail fin regeneration. Here we describe the workflow for using the TetON system to achieve inducible, tissue-specific gene expression in the adult regenerating zebrafish tail fin. This includes the generation of stable transgenic TetActivator and TetResponder lines, transgene induction and techniques for verification of tissue-specific gene expression in the fin regenerate. Thus, this protocol serves as blueprint for setting up a functional TetON system in zebrafish and its subsequent use, in particular for studying fin regeneration.
Developmental Biology, Issue 100, Tetracycline-controlled transcriptional activation, TetON, zebrafish, Regeneration, fin, tissue-specific gene expression, doxycycline, cryosectioning, transgenic, Tol2, I-SceI, anesthesia
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.