JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.
.
PLoS ONE
PUBLISHED: 05-07-2015
The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS) have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.
Authors: Norio Motohashi, Yoko Asakura, Atsushi Asakura.
Published: 04-08-2014
ABSTRACT
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors. However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.
22 Related JoVE Articles!
Play Button
Loading Drosophila Nerve Terminals with Calcium Indicators
Authors: Adam J. Rossano, Gregory T. Macleod.
Institutions: University of Texas Health Science Center at San Antonio (UTHSCSA).
Calcium plays many roles in the nervous system but none more impressive than as the trigger for neurotransmitter release, and none more profound than as the messenger essential for the synaptic plasticity that supports learning and memory. To further elucidate the molecular underpinnings of Ca2+-dependent synaptic mechanisms, a model system is required that is both genetically malleable and physiologically accessible. Drosophila melanogaster provides such a model. In this system, genetically-encoded fluorescent indicators are available to detect Ca2+ changes in nerve terminals. However, these indicators have limited sensitivity to Ca2+ and often show a non-linear response. Synthetic fluorescent indicators are better suited for measuring the rapid Ca2+ changes associated with nerve activity. Here we demonstrate a technique for loading dextran-conjugated synthetic Ca2+ indicators into live nerve terminals in Drosophila larvae. Particular emphasis is placed on those aspects of the protocol most critical to the technique's success, such as how to avoid static electricity discharges along the isolated nerves, maintaining the health of the preparation during extended loading periods, and ensuring axon survival by providing Ca2+ to promote sealing of severed axon endings. Low affinity dextran-conjugated Ca2+-indicators, such as fluo-4 and rhod, are available which show a high signal-to-noise ratio while minimally disrupting presynaptic Ca2+ dynamics. Dextran-conjugation helps prevent Ca2+ indicators being sequestered into organelles such as mitochondria. The loading technique can be applied equally to larvae, embryos and adults.
Neuroscience, Issue 6, Drosophila, neuron, imaging
250
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Combination of Microstereolithography and Electrospinning to Produce Membranes Equipped with Niches for Corneal Regeneration
Authors: Ílida Ortega, Farshid Sefat, Pallavi Deshpande, Thomas Paterson, Charanya Ramachandran, Anthony J. Ryan, Sheila MacNeil, Frederik Claeyssens.
Institutions: University of Sheffield, University of Sheffield, L. V. Prasad Eye Institute.
Corneal problems affect millions of people worldwide reducing their quality of life significantly. Corneal disease can be caused by illnesses such as Aniridia or Steven Johnson Syndrome as well as by external factors such as chemical burns or radiation. Current treatments are (i) the use of corneal grafts and (ii) the use of stem cell expanded in the laboratory and delivered on carriers (e.g., amniotic membrane); these treatments are relatively successful but unfortunately they can fail after 3-5 years. There is a need to design and manufacture new corneal biomaterial devices able to mimic in detail the physiological environment where stem cells reside in the cornea. Limbal stem cells are located in the limbus (circular area between cornea and sclera) in specific niches known as the Palisades of Vogt. In this work we have developed a new platform technology which combines two cutting-edge manufacturing techniques (microstereolithography and electrospinning) for the fabrication of corneal membranes that mimic to a certain extent the limbus. Our membranes contain artificial micropockets which aim to provide cells with protection as the Palisades of Vogt do in the eye.
Bioengineering, Issue 91, electrospinning, microstereolithography, stem cell niche, storage, limbal explants
51826
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Isolation, Cryopreservation and Culture of Human Amnion Epithelial Cells for Clinical Applications
Authors: Sean V. Murphy, Amritha Kidyoor, Tanya Reid, Anthony Atala, Euan M. Wallace, Rebecca Lim.
Institutions: Wake Forest University Health Sciences, Monash University.
Human amnion epithelial cells (hAECs) derived from term or pre-term amnion membranes have attracted attention from researchers and clinicians as a potential source of cells for regenerative medicine. The reason for this interest is evidence that these cells have highly multipotent differentiation ability, low immunogenicity, and anti-inflammatory functions. These properties have prompted researchers to investigate the potential of hAECs to be used to treat a variety of diseases and disorders in pre-clinical animal studies with much success. hAECs have found widespread application for the treatment of a range of diseases and disorders. Potential clinical applications of hAECs include the treatment of stroke, multiple sclerosis, liver disease, diabetes and chronic and acute lung diseases. Progressing from pre-clinical animal studies into clinical trials requires a higher standard of quality control and safety for cell therapy products. For safety and quality control considerations, it is preferred that cell isolation protocols use animal product-free reagents. We have developed protocols to allow researchers to isolate, cryopreserve and culture hAECs using animal product-free reagents. The advantage of this method is that these cells can be isolated, characterized, cryopreserved and cultured without the risk of delivering potentially harmful animal pathogens to humans, while maintaining suitable cell yields, viabilities and growth potential. For researchers moving from pre-clinical animal studies to clinical trials, these methodologies will greatly accelerate regulatory approval, decrease risks and improve the quality of their therapeutic cell population.
Medicine, Issue 94, Amnion Membrane, Amniotic, Stem Cells, Epithelial, Cell Therapy, Perinatal, Placenta
52085
Play Button
The Neuromuscular Junction: Measuring Synapse Size, Fragmentation and Changes in Synaptic Protein Density Using Confocal Fluorescence Microscopy
Authors: Nigel Tse, Marco Morsch, Nazanin Ghazanfari, Louise Cole, Archunan Visvanathan, Catherine Leamey, William D. Phillips.
Institutions: University of Sydney, Macquarie University, University of Sydney.
The neuromuscular junction (NMJ) is the large, cholinergic relay synapse through which mammalian motor neurons control voluntary muscle contraction. Structural changes at the NMJ can result in neurotransmission failure, resulting in weakness, atrophy and even death of the muscle fiber. Many studies have investigated how genetic modifications or disease can alter the structure of the mouse NMJ. Unfortunately, it can be difficult to directly compare findings from these studies because they often employed different parameters and analytical methods. Three protocols are described here. The first uses maximum intensity projection confocal images to measure the area of acetylcholine receptor (AChR)-rich postsynaptic membrane domains at the endplate and the area of synaptic vesicle staining in the overlying presynaptic nerve terminal. The second protocol compares the relative intensities of immunostaining for synaptic proteins in the postsynaptic membrane. The third protocol uses Fluorescence Resonance Energy Transfer (FRET) to detect changes in the packing of postsynaptic AChRs at the endplate. The protocols have been developed and refined over a series of studies. Factors that influence the quality and consistency of results are discussed and normative data are provided for NMJs in healthy young adult mice.
Neuroscience, Issue 94, neuromuscular, motor endplate, motor control, sarcopenia, myasthenia gravis, amyotrophic lateral sclerosis, morphometry, confocal, immunofluorescence
52220
Play Button
Minimally-invasive Technique for Injection into Rat Optic Nerve
Authors: Kateryna Raykova, Melina V. Jones, Hwa Huang, Paul F. Hoffman, Michael Levy.
Institutions: Johns Hopkins University.
The rat optic nerve is a useful model for stem cell regeneration research. Direct injection into the rat optic nerve allows delivery into the central nervous system in a minimally-invasive surgery without bone removal. This technique describes an approach to visualization and direct injection of the optic nerve following minor fascial dissection from the orbital ridge, using a conjunctival traction suture to gently pull the eye down and out. Representative examples of an injected optic nerve show successful injection of dyed beads.
Neuroscience, Issue 99, optic nerve, injection, stem cells, regeneration, optic neuritis, optic neuropathy
52249
Play Button
Single-stage Dynamic Reanimation of the Smile in Irreversible Facial Paralysis by Free Functional Muscle Transfer
Authors: Jan Thiele, Holger Bannasch, G. Bjoern Stark, Steffen U. Eisenhardt.
Institutions: University of Freiburg Medical Centre.
Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell’s palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results.
Medicine, Issue 97, microsurgery, free microvascular tissue transfer, face, head, head and neck surgery, facial paralysis
52386
Play Button
Dorsal Root Ganglia Neurons and Differentiated Adipose-derived Stem Cells: An In Vitro Co-culture Model to Study Peripheral Nerve Regeneration
Authors: Alba C. de Luca, Alessandro Faroni, Adam J. Reid.
Institutions: EPFL | STI | IMT/IBI | LSBI, The University of Manchester, University Hospital of South Manchester.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.
Neuroscience, Issue 96, Co-culture, neurons, stem cells, neurite outgrowth, peripheral nerve repair, cell-cell interaction
52543
Play Button
Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles
Authors: Paola L. Carvajal Monroy, Zipora Yablonka-Reuveni, Sander Grefte, Anne Marie Kuijpers-Jagtman, Frank A.D.T.G. Wagener, Johannes W. Von den Hoff.
Institutions: Radboud University Medical Center, University of Washington School of Medicine, Radboud University Medical Center.
Fibrosis and defective muscle regeneration can hamper the functional recovery of the soft palate muscles after cleft palate repair. This causes persistent problems in speech, swallowing, and sucking. In vitro culture systems that allow the study of satellite cells (myogenic stem cells) from head muscles are crucial to develop new therapies based on tissue engineering to promote muscle regeneration after surgery. These systems will offer new perspectives for the treatment of cleft palate patients. A protocol for the isolation, culture and differentiation of satellite cells from head muscles is presented. The isolation is based on enzymatic digestion and trituration to release the satellite cells. In addition, this protocol comprises an innovative method using extracellular matrix gel coatings of millimeter size, which requires only low numbers of satellite cells for differentiation assays.
Developmental Biology, Issue 101, Head muscles, levator veli palatini muscle, digastric muscle, masseter muscle, satellite cells, isolation primary cells, cleft palate, regenerative medicine, tissue engineering, stem cells, differentiation, myofibers
52802
Play Button
Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis
Authors: Lyndsay Murray, Thomas H Gillingwater, Rashmi Kothary.
Institutions: Ottawa Hospital Research Institute, University of Edinburgh.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.
Neuroscience, Issue 83, Transversus Abdominis, neuromuscular junction, NMJ, dissection, mouse, immunofluorescence
51162
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
51064
Play Button
Combining Peripheral Nerve Grafting and Matrix Modulation to Repair the Injured Rat Spinal Cord
Authors: John D. Houle, Arthi Amin, Marie-Pascale Cote, Michel Lemay, Kassi Miller, Harra Sandrow, Lauren Santi, Jed Shumsky, Veronica Tom.
Institutions: Drexel University College of Medicine.
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons.
Neurobiology, Issue 33, transplantation, SCI, regeneration, tract tracing, electrophysiology
1324
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
The Spared Nerve Injury (SNI) Model of Induced Mechanical Allodynia in Mice
Authors: Mette Richner, Ole J. Bjerrum, Anders Nykjaer, Christian B. Vaegter.
Institutions: Aarhus University, University of Copenhagen.
Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. The lesion results in marked hypersensitivity in the lateral area of the paw, which is innervated by the spared sural nerve. The non-operated side of the mouse can be used as a control. The advantages of the SNI model are the robustness of the response and that it doesn’t require expert microsurgical skills. The threshold for mechanical pain response is determined by testing with von Frey filaments of increasing bending force, which are repetitively pressed against the lateral area of the paw [3], [4]. A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.
Neuroscience, Issue 54, Sciatic, Injury, PNS, Mechanical allodynia, Neuropathic pain, von Frey
3092
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
3439
Play Button
A Functional Motor Unit in the Culture Dish: Co-culture of Spinal Cord Explants and Muscle Cells
Authors: Anne-Sophie Arnold, Martine Christe, Christoph Handschin.
Institutions: University of Basel.
Human primary muscle cells cultured aneurally in monolayer rarely contract spontaneously because, in the absence of a nerve component, cell differentiation is limited and motor neuron stimulation is missing1. These limitations hamper the in vitro study of many neuromuscular diseases in cultured muscle cells. Importantly, the experimental constraints of monolayered, cultured muscle cells can be overcome by functional innervation of myofibers with spinal cord explants in co-cultures. Here, we show the different steps required to achieve an efficient, proper innervation of human primary muscle cells, leading to complete differentiation and fiber contraction according to the method developed by Askanas2. To do so, muscle cells are co-cultured with spinal cord explants of rat embryos at ED 13.5, with the dorsal root ganglia still attached to the spinal cord slices. After a few days, the muscle fibers start to contract and eventually become cross-striated through innervation by functional neurites projecting from the spinal cord explants that connecting to the muscle cells. This structure can be maintained for many months, simply by regular exchange of the culture medium. The applications of this invaluable tool are numerous, as it represents a functional model for multidisciplinary analyses of human muscle development and innervation. In fact, a complete de novo neuromuscular junction installation occurs in a culture dish, allowing an easy measurement of many parameters at each step, in a fundamental and physiological context. Just to cite a few examples, genomic and/or proteomic studies can be performed directly on the co-cultures. Furthermore, pre- and post-synaptic effects can be specifically and separately assessed at the neuromuscular junction, because both components come from different species, rat and human, respectively. The nerve-muscle co-culture can also be performed with human muscle cells isolated from patients suffering from muscle or neuromuscular diseases3, and thus can be used as a screening tool for candidate drugs. Finally, no special equipment but a regular BSL2 facility is needed to reproduce a functional motor unit in a culture dish. This method thus is valuable for both the muscle as well as the neuromuscular research communities for physiological and mechanistic studies of neuromuscular function, in a normal and disease context.
Neuroscience, Issue 62, Human primary muscle cells, embryonic spinal cord explants, neurites, innervation, contraction, cell culture
3616
Play Button
A Novel Surgical Approach for Intratracheal Administration of Bioactive Agents in a Fetal Mouse Model
Authors: Marianne S. Carlon, Jaan Toelen, Marina Mori da Cunha, Dragana Vidović, Anke Van der Perren, Steffi Mayer, Lourenço Sbragia, Johan Nuyts, Uwe Himmelreich, Zeger Debyser, Jan Deprest.
Institutions: KU Leuven, KU Leuven, KU Leuven, KU Leuven, KU Leuven.
Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome1,2 or hyperoxic injuries of the neonatal lung3. Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)4, genetic variants of surfactant deficiencies5 and α1-antitrypsin deficiency6. Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies7. In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep8, and even in a clinical setting9, but has to date not been performed before in a mouse model. When studying the potential of fetal gene therapy for genetic diseases such as CF, the mouse model is very useful as a first proof-of-concept because of the wide availability of different transgenic mouse strains, the well documented embryogenesis and fetal development, less stringent ethical regulations, short gestation and the large litter size. Different access routes have been described to target the fetal rodent lung, including intra-amniotic injection10-12, (ultrasound-guided) intrapulmonary injection13,14 and intravenous administration into the yolk sac vessels15,16 or umbilical vein17. Our novel surgical procedure enables researchers to inject the agent of choice directly into the fetal mouse trachea which allows for a more efficient delivery to the airways than existing techniques18.
Medicine, Issue 68, Fetal, intratracheal, intra-amniotic, cross-fostering, lung, microsurgery, gene therapy, mice, rAAV
4219
Play Button
Transplantation of Induced Pluripotent Stem Cell-derived Mesoangioblast-like Myogenic Progenitors in Mouse Models of Muscle Regeneration
Authors: Mattia F. M. Gerli, Sara M. Maffioletti, Queensta Millet, Francesco Saverio Tedesco.
Institutions: University College London, San Raffaele Hospital.
Patient-derived iPSCs could be an invaluable source of cells for future autologous cell therapy protocols. iPSC-derived myogenic stem/progenitor cells similar to pericyte-derived mesoangioblasts (iPSC-derived mesoangioblast-like stem/progenitor cells: IDEMs) can be established from iPSCs generated from patients affected by different forms of muscular dystrophy. Patient-specific IDEMs can be genetically corrected with different strategies (e.g. lentiviral vectors, human artificial chromosomes) and enhanced in their myogenic differentiation potential upon overexpression of the myogenesis regulator MyoD. This myogenic potential is then assessed in vitro with specific differentiation assays and analyzed by immunofluorescence. The regenerative potential of IDEMs is further evaluated in vivo, upon intramuscular and intra-arterial transplantation in two representative mouse models displaying acute and chronic muscle regeneration. The contribution of IDEMs to the host skeletal muscle is then confirmed by different functional tests in transplanted mice. In particular, the amelioration of the motor capacity of the animals is studied with treadmill tests. Cell engraftment and differentiation are then assessed by a number of histological and immunofluorescence assays on transplanted muscles. Overall, this paper describes the assays and tools currently utilized to evaluate the differentiation capacity of IDEMs, focusing on the transplantation methods and subsequent outcome measures to analyze the efficacy of cell transplantation.
Bioengineering, Issue 83, Skeletal Muscle, Muscle Cells, Muscle Fibers, Skeletal, Pericytes, Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Muscular Dystrophies, Cell Differentiation, animal models, muscle stem/progenitor cells, mesoangioblasts, muscle regeneration, iPSC-derived mesoangioblasts (IDEMs)
50532
Play Button
Transplantation of Olfactory Ensheathing Cells to Evaluate Functional Recovery after Peripheral Nerve Injury
Authors: Nicolas Guerout, Alexandre Paviot, Nicolas Bon-Mardion, Axel Honoré, Rais OBongo, Célia Duclos, Jean-Paul Marie.
Institutions: University of Rouen, Karolinska Institutet, Rouen University Hospital, Amiens University Hospital.
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.
Neuroscience, Issue 84, olfactory ensheathing cells, spinal cord injury, transplantation, larynx, recurrent laryngeal nerve, peripheral nerve injury, vocal cords
50590
Play Button
Tibial Nerve Transection - A Standardized Model for Denervation-induced Skeletal Muscle Atrophy in Mice
Authors: Jane A. E. Batt, James Ralph Bain.
Institutions: St Michaels Hospital, McMaster University.
The tibial nerve transection model is a well-tolerated, validated, and reproducible model of denervation-induced skeletal muscle atrophy in rodents. Although originally developed and used extensively in the rat due to its larger size, the tibial nerve in mice is big enough that it can be easily manipulated with either crush or transection, leaving the peroneal and sural nerve branches of the sciatic nerve intact and thereby preserving their target muscles. Thus, this model offers the advantages of inducing less morbidity and impediment of ambulation than the sciatic nerve transection model and also allows investigators to study the physiologic, cellular and molecular biologic mechanisms regulating the process of muscle atrophy in genetically engineered mice. The tibial nerve supplies the gastrocnemius, soleus and plantaris muscles, so its transection permits the study of denervated skeletal muscle composed of fast twitch type II fibers and/or slow twitch type I fibers. Here we demonstrate the tibial nerve transection model in the C57Black6 mouse. We assess the atrophy of the gastrocnemius muscle, as a representative muscle, at 1, 2, and 4 weeks post-denervation by measuring muscle weights and fiber type specific cross-sectional area on paraffin-embedded histologic sections immunostained for fast twitch myosin.
Medicine, Issue 81, mouse, tibial nerve, gastronemius, soleus, atrophy, denervation, reinnervation, myofiber, transection
50657
Play Button
Intramuscular Injections Along the Motor End Plates: A Minimally Invasive Approach to Shuttle Tracers Directly into Motor Neurons
Authors: Rahul Mohan, Andrew P. Tosolini, Renée Morris.
Institutions: University of New South Wales.
Diseases affecting the integrity of spinal cord motor neurons are amongst the most debilitating neurological conditions. Over the last decades, the development of several animal models of these neuromuscular disorders has provided the scientific community with different therapeutic scenarios aimed at delaying or reversing the progression of these conditions. By taking advantage of the retrograde machinery of neurons, one of these approaches has been to target skeletal muscles in order to shuttle therapeutic genes into corresponding spinal cord motor neurons. Although once promising, the success of such gene delivery approach has been hampered by the sub-optimal number of transduced motor neurons it has so far shown to yield. Motor end plates (MEPs) are highly specialized regions on the skeletal musculature that are in direct synaptic contact to the spinal cord α motor neurons. In this regard, it is important to note that, so far, the efforts to retrogradely transfer genes into motor neurons were made without reference to the location of the MEP region in the targeted muscles. Here, we describe a simple protocol 1) to reveal the exact location of the MEPs on the surface of skeletal muscles and 2) to use this information to guide the intramuscular delivery and subsequent optimal retrograde transport of retrograde tracers into motor neurons. We hope to utilize the results from these tracing experiments in further studies into investigating retrograde transport of therapeutic genes to spinal cord motor neurons through the targeting of MEPs.
Neurobiology, Issue 101, Motor neurons, motor end plates, retrograde transport, striated muscles, mouse, rat, hindlimb, forelimb
52846
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.