JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
PUBLISHED: 05-08-2015
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope1. As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns2. The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam3-5. To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell6,7. Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network8.
24 Related JoVE Articles!
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
Play Button
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Authors: James J. Jun, André Longtin, Leonard Maler.
Institutions: University of Ottawa, University of Ottawa, University of Ottawa.
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.
Neuroscience, Issue 85, animal tracking, weakly electric fish, electric organ discharge, underwater infrared imaging, automated image tracking, sensory isolation chamber, exploratory behavior
Play Button
Conducting Miller-Urey Experiments
Authors: Eric T. Parker, James H. Cleaves, Aaron S. Burton, Daniel P. Glavin, Jason P. Dworkin, Manshui Zhou, Jeffrey L. Bada, Facundo M. Fernández.
Institutions: Georgia Institute of Technology, Tokyo Institute of Technology, Institute for Advanced Study, NASA Johnson Space Center, NASA Goddard Space Flight Center, University of California at San Diego.
In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.
Chemistry, Issue 83, Geosciences (General), Exobiology, Miller-Urey, Prebiotic chemistry, amino acids, spark discharge
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores
Authors: Eric Beamish, Harold Kwok, Vincent Tabard-Cossa, Michel Godin.
Institutions: University of Ottawa, University of Ottawa.
Solid-state nanopores have emerged as a versatile tool for the characterization of single biomolecules such as nucleic acids and proteins1. However, the creation of a nanopore in a thin insulating membrane remains challenging. Fabrication methods involving specialized focused electron beam systems can produce well-defined nanopores, but yield of reliable and low-noise nanopores in commercially available membranes remains low2,3 and size control is nontrivial4,5. Here, the application of high electric fields to fine-tune the size of the nanopore while ensuring optimal low-noise performance is demonstrated. These short pulses of high electric field are used to produce a pristine electrical signal and allow for enlarging of nanopores with subnanometer precision upon prolonged exposure. This method is performed in situ in an aqueous environment using standard laboratory equipment, improving the yield and reproducibility of solid-state nanopore fabrication.
Physics, Issue 80, Nanopore, Solid-State, Size Control, Noise Reduction, Translocation, DNA, High Electric Fields, Nanopore Conditioning
Play Button
Spatial Separation of Molecular Conformers and Clusters
Authors: Daniel Horke, Sebastian Trippel, Yuan-Pin Chang, Stephan Stern, Terry Mullins, Thomas Kierspel, Jochen Küpper.
Institutions: CFEL, DESY, University of Hamburg, University of Hamburg.
Gas-phase molecular physics and physical chemistry experiments commonly use supersonic expansions through pulsed valves for the production of cold molecular beams. However, these beams often contain multiple conformers and clusters, even at low rotational temperatures. We present an experimental methodology that allows the spatial separation of these constituent parts of a molecular beam expansion. Using an electric deflector the beam is separated by its mass-to-dipole moment ratio, analogous to a bender or an electric sector mass spectrometer spatially dispersing charged molecules on the basis of their mass-to-charge ratio. This deflector exploits the Stark effect in an inhomogeneous electric field and allows the separation of individual species of polar neutral molecules and clusters. It furthermore allows the selection of the coldest part of a molecular beam, as low-energy rotational quantum states generally experience the largest deflection. Different structural isomers (conformers) of a species can be separated due to the different arrangement of functional groups, which leads to distinct dipole moments. These are exploited by the electrostatic deflector for the production of a conformationally pure sample from a molecular beam. Similarly, specific cluster stoichiometries can be selected, as the mass and dipole moment of a given cluster depends on the degree of solvation around the parent molecule. This allows experiments on specific cluster sizes and structures, enabling the systematic study of solvation of neutral molecules.
Physics, Issue 83, Chemical Physics, Physical Chemistry, Molecular Physics, Molecular beams, Laser Spectroscopy, Clusters
Play Button
The Preparation of Electrohydrodynamic Bridges from Polar Dielectric Liquids
Authors: Adam D. Wexler, Mónica López Sáenz, Oliver Schreer, Jakob Woisetschläger, Elmar C. Fuchs.
Institutions: Wetsus - Centre of Excellence for Sustainable Water Technology, IRCAM GmbH, Graz University of Technology.
Horizontal and vertical liquid bridges are simple and powerful tools for exploring the interaction of high intensity electric fields (8-20 kV/cm) and polar dielectric liquids. These bridges are unique from capillary bridges in that they exhibit extensibility beyond a few millimeters, have complex bi-directional mass transfer patterns, and emit non-Planck infrared radiation. A number of common solvents can form such bridges as well as low conductivity solutions and colloidal suspensions. The macroscopic behavior is governed by electrohydrodynamics and provides a means of studying fluid flow phenomena without the presence of rigid walls. Prior to the onset of a liquid bridge several important phenomena can be observed including advancing meniscus height (electrowetting), bulk fluid circulation (the Sumoto effect), and the ejection of charged droplets (electrospray). The interaction between surface, polarization, and displacement forces can be directly examined by varying applied voltage and bridge length. The electric field, assisted by gravity, stabilizes the liquid bridge against Rayleigh-Plateau instabilities. Construction of basic apparatus for both vertical and horizontal orientation along with operational examples, including thermographic images, for three liquids (e.g., water, DMSO, and glycerol) is presented.
Physics, Issue 91, floating water bridge, polar dielectric liquids, liquid bridge, electrohydrodynamics, thermography, dielectrophoresis, electrowetting, Sumoto effect, Armstrong effect
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface
Authors: Kathleen Smits, Victoria Eagen, Andrew Trautz.
Institutions: Colorado School of Mines.
Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages.
Environmental Sciences, Issue 100, Bare-soil evaporation, Land-atmosphere interactions, Heat and mass flux, Porous media, Wind tunnel, Soil thermal properties, Multiphase flow
Play Button
Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task
Authors: Barbara Sargent, Hendrik Reimann, Masayoshi Kubo, Linda Fetters.
Institutions: University of Southern California, Temple University, Niigata University of Health and Welfare.
Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants’ leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.
Behavior, Issue 100, infant, discovery-learning, motor learning, motor control, kinematics, kinetics
Play Button
Flexible Colonoscopy in Mice to Evaluate the Severity of Colitis and Colorectal Tumors Using a Validated Endoscopic Scoring System
Authors: Tomohiro Kodani, Alex Rodriguez-Palacios, Daniele Corridoni, Loris Lopetuso, Luca Di Martino, Brian Marks, James Pizarro, Theresa Pizarro, Amitabh Chak, Fabio Cominelli.
Institutions: Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland.
The use of modern endoscopy for research purposes has greatly facilitated our understanding of gastrointestinal pathologies. In particular, experimental endoscopy has been highly useful for studies that require repeated assessments in a single laboratory animal, such as those evaluating mechanisms of chronic inflammatory bowel disease and the progression of colorectal cancer. However, the methods used across studies are highly variable. At least three endoscopic scoring systems have been published for murine colitis and published protocols for the assessment of colorectal tumors fail to address the presence of concomitant colonic inflammation. This study develops and validates a reproducible endoscopic scoring system that integrates evaluation of both inflammation and tumors simultaneously. This novel scoring system has three major components: 1) assessment of the extent and severity of colorectal inflammation (based on perianal findings, transparency of the wall, mucosal bleeding, and focal lesions), 2) quantitative recording of tumor lesions (grid map and bar graph), and 3) numerical sorting of clinical cases by their pathological and research relevance based on decimal units with assigned categories of observed lesions and endoscopic complications (decimal identifiers). The video and manuscript presented herein were prepared, following IACUC-approved protocols, to allow investigators to score their own experimental mice using a well-validated and highly reproducible endoscopic methodology, with the system option to differentiate distal from proximal endoscopic colitis (D-PECS).
Medicine, Issue 80, Crohn's disease, ulcerative colitis, colon cancer, Clostridium difficile, SAMP mice, DSS/AOM-colitis, decimal scoring identifier
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
Play Button
Drawing Blood from Rats through the Saphenous Vein and by Cardiac Puncture
Authors: Christine Beeton, Adriana Garcia, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Drawing blood from rodents is necessary for a large number of both in vitro and in vivo studies. Sites of blood draws are numerous in rodents: retro-orbital sinus, jugular vein, maxillary vein, saphenous vein, heart. Each technique has its advantages and disadvantages, and some are not approved any more in some countries (e.g., retro-orbital draws in Holland). A discussion of different techniques for drawing blood are available 1-3. Here, we present two techniques for drawing blood from rats, each with its specific applications. Blood draw from the saphenous vein, provided it is done properly, induces minimal distress in animals and does not require anesthesia. This technique allows repeated draws of small amounts of blood, such as needed for pharmacokinetic studies 4,5, determining plasma chemistry, or blood counts 6. Cardiac puncture allows the collection of large amounts of blood from a single animal (up to 10 ml of blood can be drawn from a 150 g rat). This technique is therefore very useful as a terminal procedure when drawing blood from the saphenous would not provide a large enough sample. We use cardiac puncture when we need sufficient amounts of serum from a specific strain of rats to grow T lymphocyte lines in vitro 4-9.
Immunology, Issue 7, Blood Sampling Method, Rodent, Blood Draw, Heart, Pharmacokinetics, Serum, Plasma, Blood Collection, Bleeding, Hematology
Play Button
Operant Learning of Drosophila at the Torque Meter
Authors: Bjoern Brembs.
Institutions: Free University of Berlin.
For experiments at the torque meter, flies are kept on standard fly medium at 25°C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.
Neuroscience, Issue 16, operant, learning, Drosophila, fruit fly, insect, invertebrate, neuroscience, neurobiology, fly, conditioning
Play Button
Electrochemotherapy of Tumours
Authors: Gregor Sersa, Damijan Miklavcic.
Institutions: Institute of Oncology Ljubljana, University of Ljubljana.
Electrochemotherapy is a combined use of certain chemotherapeutic drugs and electric pulses applied to the treated tumour nodule. Local application of electric pulses to the tumour increases drug delivery into cells, specifically at the site of electric pulse application. Drug uptake by delivery of electric pulses is increased for only those chemotherapeutic drugs whose transport through the plasma membrane is impeded. Among many drugs that have been tested so far, bleomycin and cisplatin found their way from preclinical testing to clinical use. Clinical data collected within a number of clinical studies indicate that approximately 80% of the treated cutaneous and subcutaneous tumour nodules of different malignancies are in an objective response, from these, approximately 70% in complete response after a single application of electrochemotherapy. Usually only one treatment is needed, however, electrochemotherapy can be repeated several times every few weeks with equal effectiveness each time. The treatment results in an effective eradication of the treated nodules, with a good cosmetic effect without tissue scarring.
Medicine, Issue 22, electrochemotherapy, electroporation, cisplatin, bleomycin, malignant tumours, cutaneous lesions
Play Button
A Magnetic Tether System to Investigate Visual and Olfactory Mediated Flight Control in Drosophila
Authors: Brian J. Duistermars, Mark A. Frye.
Institutions: University of California, Los Angeles.
It has been clear for many years that insects use visual cues to stabilize their heading in a wind stream. Many animals track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Also, the recent deluge of research on the neurophysiology and neurobehavioral genetics of olfaction in Drosophila has motivated ever more technically sophisticated and quantitative behavioral assays. Here, we modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. A fly is glued to a small steel pin and suspended in a magnetic field that enables it to yaw freely. Small diameter food odor plumes are directed downward over the fly s head, eliciting stable tracking by a hungry fly. Here we focus on the critical mechanics of tethering, aligning the magnets, devising the odor plume, and confirming stable odor tracking.
Neuroscience, Issue 21, tether, Drosophila, magnet, olfaction, flight, behavior
Play Button
Optic Nerve Transection: A Model of Adult Neuron Apoptosis in the Central Nervous System
Authors: Mark M. Magharious, Philippe M. D'Onofrio, Paulo D. Koeberle.
Institutions: University of Toronto.
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS 1-4. This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve 5-7 or injecting vectors into their target, the superior colliculus 8. This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy 9-11. RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis.
Neuroscience, issue 51, Central Nervous System, Retina, Apoptosis, Retinal Ganglion Cell, Axotomy, Optic Nerve Transection, Rat, Retrograde Labeling, Rat Model
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
Play Button
Measuring the Subjective Value of Risky and Ambiguous Options using Experimental Economics and Functional MRI Methods
Authors: Ifat Levy, Lior Rosenberg Belmaker, Kirk Manson, Agnieszka Tymula, Paul W. Glimcher.
Institutions: Yale School of Medicine, Yale School of Medicine, New York University , New York University , New York University .
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity1,2, the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method3 to assess the neural representation of the subjective values of risky and ambiguous options4. This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations. In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual's choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options.
Neuroscience, Issue 67, Medicine, Molecular Biology, fMRI, magnetic resonance imaging, decision-making, value, uncertainty, risk, ambiguity
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors
Authors: Tindaro Ioppolo, Volkan Ötügen, Ulas Ayaz.
Institutions: Southern Methodist University.
Optical modes of dielectric micro-cavities have received significant attention in recent years for their potential in a broad range of applications. The optical modes are frequently referred to as "whispering gallery modes" (WGM) or "morphology dependent resonances" (MDR) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology. The WGM-based sensor applications include those in biology7, trace gas detection8, and impurity detection in liquids9. Mechanical sensors based on microsphere resonators have also been proposed, including those for force10,11, pressure12, acceleration13 and wall shear stress14. In the present, we demonstrate a WGM-based electric field sensor, which builds on our previous studies15,16. A candidate application of this sensor is in the detection of neuronal action potential. The electric field sensor is based on polymeric multi-layered dielectric microspheres. The external electric field induces surface and body forces on the spheres (electrostriction effect) leading to elastic deformation. This change in the morphology of the spheres, leads to shifts in the WGM. The electric field-induced WGM shifts are interrogated by exciting the optical modes of the spheres by laser light. Light from a distributed feedback (DFB) laser (nominal wavelength of ~ 1.3 μm) is side-coupled into the microspheres using a tapered section of a single mode optical fiber. The base material of the spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are used: (1) PDMS sphere with a 60:1 volumetric ratio of base-to-curing agent mixture, (2) multi layer sphere with 60:1 PDMS core, in order to increase the dielectric constant of the sphere, a middle layer of 60:1 PDMS that is mixed with varying amounts (2% to 10% by volume) of barium titanate and an outer layer of 60:1 PDMS and (3) solid silica sphere coated with a thin layer of uncured PDMS base. In each type of sensor, laser light from the tapered fiber is coupled into the outermost layer that provides high optical quality factor WGM (Q ~ 106). The microspheres are poled for several hours at electric fields of ~ 1 MV/m to increase their sensitivity to electric field.
Mechanical Engineering, Issue 71, Physics, Optics, Materials Science, Chemical Engineering, electrostatics, optical fibers, optical materials, optical waveguides, optics, optoelectronics, photonics, geometrical optics, sensors, electric field, dielectric resonators, micro-spheres, whispering gallery mode, morphology dependent resonance, PDMS
Play Button
Fabrication of High Contrast Gratings for the Spectrum Splitting Dispersive Element in a Concentrated Photovoltaic System
Authors: Yuhan Yao, He Liu, Wei Wu.
Institutions: University of Sothern California.
High contrast gratings are designed and fabricated and its application is proposed in a parallel spectrum splitting dispersive element that can improve the solar conversion efficiency of a concentrated photovoltaic system. The proposed system will also lower the solar cell cost in the concentrated photovoltaic system by replacing the expensive tandem solar cells with the cost-effective single junction solar cells. The structures and the parameters of high contrast gratings for the dispersive elements were numerically optimized. The large-area fabrication of high contrast gratings was experimentally demonstrated using nanoimprint lithography and dry etching. The quality of grating material and the performance of the fabricated device were both experimentally characterized. By analyzing the measurement results, the possible side effects from the fabrication processes are discussed and several methods that have the potential to improve the fabrication processes are proposed, which can help to increase the optical efficiency of the fabricated devices.
Engineering, Issue 101, Parallel spectrum splitting, dispersive element, high contrast grating, concentrated photovoltaic system, nanoimprint lithography, reactive ion etching
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.