JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
A novel quantitative hemolytic assay coupled with restriction fragment length polymorphisms analysis enabled early diagnosis of atypical hemolytic uremic syndrome and identified unique predisposing mutations in Japan.
PUBLISHED: 05-08-2015
For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (?50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients.
Authors: Elisabeth M. Meulenbroek, Diana Wouters, Sacha Zeerleder.
Published: 01-29-2014
Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation.
25 Related JoVE Articles!
Play Button
Depletion of Specific Cell Populations by Complement Depletion
Authors: Bonnie N. Dittel.
Institutions: Blood Research Institute.
The purification of immune cell populations is often required in order to study their unique functions. In particular, molecular approaches such as real-time PCR and microarray analysis require the isolation of cell populations with high purity. Commonly used purification strategies include fluorescent activated cell sorting (FACS), magnetic bead separation and complement depletion. Of the three strategies, complement depletion offers the advantages of being fast, inexpensive, gentle on the cells and a high cell yield. The complement system is composed of a large number of plasma proteins that when activated initiate a proteolytic cascade culminating in the formation of a membrane-attack complex that forms a pore on a cell surface resulting in cell death1. The classical pathway is activated by IgM and IgG antibodies and was first described as a mechanism for killing bacteria. With the generation of monoclonal antibodies (mAb), the complement cascade can be used to lyse any cell population in an antigen-specific manner. Depletion of cells by the complement cascade is achieved by the addition of complement fixing antigen-specific antibodies and rabbit complement to the starting cell population. The cells are incubated for one hour at 37°C and the lysed cells are subsequently removed by two rounds of washing. MAb with a high efficiency for complement fixation typically deplete 95-100% of the targeted cell population. Depending on the purification strategy for the targeted cell population, complement depletion can be used for cell purification or for the enrichment of cell populations that then can be further purified by a subsequent method.
JoVE Immunology, Issue 36, rabbit, complement, cell isolation, cell depletion
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
Play Button
Detecting Somatic Genetic Alterations in Tumor Specimens by Exon Capture and Massively Parallel Sequencing
Authors: Helen H Won, Sasinya N Scott, A. Rose Brannon, Ronak H Shah, Michael F Berger.
Institutions: Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center.
Efforts to detect and investigate key oncogenic mutations have proven valuable to facilitate the appropriate treatment for cancer patients. The establishment of high-throughput, massively parallel "next-generation" sequencing has aided the discovery of many such mutations. To enhance the clinical and translational utility of this technology, platforms must be high-throughput, cost-effective, and compatible with formalin-fixed paraffin embedded (FFPE) tissue samples that may yield small amounts of degraded or damaged DNA. Here, we describe the preparation of barcoded and multiplexed DNA libraries followed by hybridization-based capture of targeted exons for the detection of cancer-associated mutations in fresh frozen and FFPE tumors by massively parallel sequencing. This method enables the identification of sequence mutations, copy number alterations, and select structural rearrangements involving all targeted genes. Targeted exon sequencing offers the benefits of high throughput, low cost, and deep sequence coverage, thus conferring high sensitivity for detecting low frequency mutations.
Molecular Biology, Issue 80, Molecular Diagnostic Techniques, High-Throughput Nucleotide Sequencing, Genetics, Neoplasms, Diagnosis, Massively parallel sequencing, targeted exon sequencing, hybridization capture, cancer, FFPE, DNA mutations
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
Play Button
High-throughput Flow Cytometry Cell-based Assay to Detect Antibodies to N-Methyl-D-aspartate Receptor or Dopamine-2 Receptor in Human Serum
Authors: Mazen Amatoury, Vera Merheb, Jessica Langer, Xin Maggie Wang, Russell Clive Dale, Fabienne Brilot.
Institutions: The University of Sydney, Westmead Millennium Institute for Medical Research.
Over the recent years, antibodies against surface and conformational proteins involved in neurotransmission have been detected in autoimmune CNS diseases in children and adults. These antibodies have been used to guide diagnosis and treatment. Cell-based assays have improved the detection of antibodies in patient serum. They are based on the surface expression of brain antigens on eukaryotic cells, which are then incubated with diluted patient sera followed by fluorochrome-conjugated secondary antibodies. After washing, secondary antibody binding is then analyzed by flow cytometry. Our group has developed a high-throughput flow cytometry live cell-based assay to reliably detect antibodies against specific neurotransmitter receptors. This flow cytometry method is straight forward, quantitative, efficient, and the use of a high-throughput sampler system allows for large patient cohorts to be easily assayed in a short space of time. Additionally, this cell-based assay can be easily adapted to detect antibodies to many different antigenic targets, both from the central nervous system and periphery. Discovering additional novel antibody biomarkers will enable prompt and accurate diagnosis and improve treatment of immune-mediated disorders.
Medicine, Issue 81, Flow cytometry, cell-based assay, autoantibody, high-throughput sampler, autoimmune CNS disease
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
Play Button
Subcloning Plus Insertion (SPI) - A Novel Recombineering Method for the Rapid Construction of Gene Targeting Vectors
Authors: Thimma R. Reddy, Emma J. Kelsall, Léna M.S. Fevat, Sarah E. Munson, Shaun M. Cowley.
Institutions: University of Leicester, Center for Fisheries, Environment and Aquaculture Sciences, University of Leicester.
Gene targeting refers to the precise modification of a genetic locus using homologous recombination. The generation of novel cell lines and transgenic mouse models using this method necessitates the construction of a ‘targeting’ vector, which contains homologous DNA sequences to the target gene, and has for many years been a limiting step in the process. Vector construction can be performed in vivo in Escherichia coli cells using homologous recombination mediated by phage recombinases using a technique termed recombineering. Recombineering is the preferred technique to subclone the long homology sequences (>4kb) and various targeting elements including selection markers that are required to mediate efficient allelic exchange between a targeting vector and its cognate genomic locus. Typical recombineering protocols follow an iterative scheme of step-wise integration of the targeting elements and require intermediate purification and transformation steps. Here, we present a novel recombineering methodology of vector assembly using a multiplex approach. Plasmid gap repair is performed by the simultaneous capture of genomic sequence from mouse Bacterial Artificial Chromosome libraries and the insertion of dual bacterial and mammalian selection markers. This subcloning plus insertion method is highly efficient and yields a majority of correct recombinants. We present data for the construction of different types of conditional gene knockout, or knock-in, vectors and BAC reporter vectors that have been constructed using this method. SPI vector construction greatly extends the repertoire of the recombineering toolbox and provides a simple, rapid and cost-effective method of constructing these highly complex vectors.
Molecular Biology, Issue 95, recombineering, gap-repair, subcloning plus insertion, transgene, knockout, mouse
Play Button
Pairwise Growth Competition Assay for Determining the Replication Fitness of Human Immunodeficiency Viruses
Authors: Siriphan Manocheewa, Erinn C. Lanxon-Cookson, Yi Liu, J. Victor Swain, Jan McClure, Ushnal Rao, Brandon Maust, Wenjie Deng, Justine E. Sunshine, Moon Kim, Morgane Rolland, James I. Mullins.
Institutions: University of Washington, University of Washington, Walter Reed Army Institute of Research, Henry M. Jackson Foundation.
In vitro fitness assays are essential tools for determining viral replication fitness for viruses such as HIV-1. Various measurements have been used to extrapolate viral replication fitness, ranging from the number of viral particles per infectious unit, growth rate in cell culture, and relative fitness derived from multiple-cycle growth competition assays. Growth competition assays provide a particularly sensitive measurement of fitness since the viruses are competing for cellular targets under identical growth conditions. There are several experimental factors to consider when conducting growth competition assays, including the multiplicity of infection (MOI), sampling times, and viral detection and fitness calculation methods. Each factor can affect the end result and hence must be considered carefully during the experimental design. The protocol presented here includes steps from constructing a new recombinant HIV-1 clone to performing growth competition assays and analyzing the experimental results. This protocol utilizes experimental parameter values previously shown to yield consistent and robust results. Alternatives are discussed, as some parameters need to be adjusted according to the cell type and viruses being studied. The protocol contains two alternative viral detection methods to provide flexibility as the availability of instruments, reagents and expertise varies between laboratories.
Immunology, Issue 99, HIV-1, Recombinant, Mutagenesis, Viral replication fitness, Growth competition, Fitness calculation
Play Button
Dried Blood Spots - Preparing and Processing for Use in Immunoassays and in Molecular Techniques
Authors: Nico Grüner, Oumaima Stambouli, R. Stefan Ross.
Institutions: University of Duisburg-Essen.
The idea of collecting blood on a paper card and subsequently using the dried blood spots (DBS) for diagnostic purposes originated a century ago. Since then, DBS testing for decades has remained predominantly focused on the diagnosis of infectious diseases especially in resource-limited settings or the systematic screening of newborns for inherited metabolic disorders and only recently have a variety of new and innovative DBS applications begun to emerge. For many years, pre-analytical variables were only inappropriately considered in the field of DBS testing and even today, with the exception of newborn screening, the entire pre-analytical phase, which comprises the preparation and processing of DBS for their final analysis has not been standardized. Given this background, a comprehensive step-by-step protocol, which covers al the essential phases, is proposed, i.e., collection of blood; preparation of blood spots; drying of blood spots; storage and transportation of DBS; elution of DBS, and finally analyses of DBS eluates. The effectiveness of this protocol was first evaluated with 1,762 coupled serum/DBS pairs for detecting markers of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus infections on an automated analytical platform. In a second step, the protocol was utilized during a pilot study, which was conducted on active drug users in the German cities of Berlin and Essen.
Molecular Biology, Issue 97, Dried blood spots, filter paper cards, specimen storage, infectious diseases, hepatitis B virus, hepatitis C virus, human immunodeficiency virus
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Measuring the 50% Haemolytic Complement (CH50) Activity of Serum
Authors: Maurizio Costabile.
Institutions: University of South Australia.
The complement system is a group of proteins that when activated lead to target cell lysis and facilitates phagocytosis through opsonisation. Individual complement components can be quantified however this does not provide any information as to the activity of the pathway. The CH50 is a screening assay for the activation of the classical complement pathway (Fig 1) and it is sensitive to the reduction, absence and/or inactivity of any component of the pathway. The CH50 tests the functional capability of serum complement components of the classical pathway to lyse sheep red blood cells (SRBC) pre-coated with rabbit anti-sheep red blood cell antibody (haemolysin). When antibody-coated SRBC are incubated with test serum, the classical pathway of complement is activated and haemolysis results. If a complement component is absent, the CH50 level will be zero; if one or more components of the classical pathway are decreased, the CH50 will be decreased. A fixed volume of optimally sensitised SRBC is added to each serum dilution. After incubation, the mixture is centrifuged and the degree of haemolysis is quantified by measuring the absorbance of the haemoglobin released into the supernatant at 540nm. The amount of complement activity is determined by examining the capacity of various dilutions of test serum to lyse antibody coated SRBC. This video outlines the experimental steps involved in analysing the level of complement activity of the classical complement pathway.
Immunology, Issue 37, Classical pathway, Complement, Haemolysis, sheep red blood cells, haemoglobin
Play Button
Subcutaneous Infection of Methicillin Resistant Staphylococcus Aureus (MRSA)
Authors: Ching Wen Tseng, Marisel Sanchez-Martinez, Andrea Arruda, George Y. Liu.
Institutions: Cedars-Sinai Medical Center.
MRSA is a worldwide threat to public health, and MRSA skin and soft-tissue infections now account for more than half of all soft-tissue infections in the United States. Among soft-tissue infections, myositis, pyomyositis, and necrotizing fasciitis have been increasingly reported in association with MRSA arising from the community. To understand the interplay between MRSA and host immunity leading to more severe infection, the availability of animal models is critical, permitting the study of host and bacterial factors. Several infection models have been introduced to assess the pathogenesis of S. aureus during superficial skin infection. Here, we describe a subcutaneous infection model that examines the skin, subcutaneous, and muscle pathologies.
Infection, Issue 48, Subcutaneous infection, Staphylococcus aureus, MRSA
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
Play Button
Detection of Invasive Pulmonary Aspergillosis in Haematological Malignancy Patients by using Lateral-flow Technology
Authors: Christopher Thornton, Gemma Johnson, Samir Agrawal.
Institutions: University of Exeter, Queen Mary University of London, St. Bartholomew's Hospital and The London NHS Trust.
Invasive pulmonary aspergillosis (IPA) is a leading cause of morbidity and mortality in haematological malignancy patients and hematopoietic stem cell transplant recipients1. Detection of IPA represents a formidable diagnostic challenge and, in the absence of a 'gold standard', relies on a combination of clinical data and microbiology and histopathology where feasible. Diagnosis of IPA must conform to the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycology Study Group (EORTC/MSG) consensus defining "proven", "probable", and "possible" invasive fungal diseases2. Currently, no nucleic acid-based tests have been externally validated for IPA detection and so polymerase chain reaction (PCR) is not included in current EORTC/MSG diagnostic criteria. Identification of Aspergillus in histological sections is problematic because of similarities in hyphal morphologies with other invasive fungal pathogens3, and proven identification requires isolation of the etiologic agent in pure culture. Culture-based approaches rely on the availability of biopsy samples, but these are not always accessible in sick patients, and do not always yield viable propagules for culture when obtained. An important feature in the pathogenesis of Aspergillus is angio-invasion, a trait that provides opportunities to track the fungus immunologically using tests that detect characteristic antigenic signatures molecules in serum and bronchoalveolar lavage (BAL) fluids. This has led to the development of the Platelia enzyme immunoassay (GM-EIA) that detects Aspergillus galactomannan and a 'pan-fungal' assay (Fungitell test) that detects the conserved fungal cell wall component (1 →3)-β-D-glucan, but not in the mucorales that lack this component in their cell walls1,4. Issues surrounding the accuracy of these tests1,4-6 has led to the recent development of next-generation monoclonal antibody (MAb)-based assays that detect surrogate markers of infection1,5. Thornton5 recently described the generation of an Aspergillus-specific MAb (JF5) using hybridoma technology and its use to develop an immuno-chromatographic lateral-flow device (LFD) for the point-of-care (POC) diagnosis of IPA. A major advantage of the LFD is its ability to detect activity since MAb JF5 binds to an extracellular glycoprotein antigen that is secreted during active growth of the fungus only5. This is an important consideration when using fluids such as lung BAL for diagnosing IPA since Aspergillus spores are a common component of inhaled air. The utility of the device in diagnosing IPA has been demonstrated using an animal model of infection, where the LFD displayed improved sensitivity and specificity compared to the Platelia GM and Fungitell (1 → 3)-β-D-glucan assays7. Here, we present a simple LFD procedure to detect Aspergillus antigen in human serum and BAL fluids. Its speed and accuracy provides a novel adjunct point-of-care test for diagnosis of IPA in haematological malignancy patients.
Immunology, Issue 61, Invasive pulmonary aspergillosis, acute myeloid leukemia, bone marrow transplant, diagnosis, monoclonal antibody, lateral-flow technology
Play Button
Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay
Authors: Derek Tilley, Irina Levit, John A. Samis.
Institutions: University of Ontario Institute of Technology , University of Ontario Institute of Technology , University of Ontario Institute of Technology .
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
Immunology, Issue 67, Factor V, Microplate, Coagulation assay, Human plasma, Disseminated intravascular coagulation (DIC), blood clotting
Play Button
Visualization of Bacterial Toxin Induced Responses Using Live Cell Fluorescence Microscopy
Authors: Peter A. Keyel, Michelle E. Heid, Simon C. Watkins, Russell D. Salter.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
Bacterial toxins bind to cholesterol in membranes, forming pores that allow for leakage of cellular contents and influx of materials from the external environment. The cell can either recover from this insult, which requires active membrane repair processes, or else die depending on the amount of toxin exposure and cell type1. In addition, these toxins induce strong inflammatory responses in infected hosts through activation of immune cells, including macrophages, which produce an array of pro-inflammatory cytokines2. Many Gram positive bacteria produce cholesterol binding toxins which have been shown to contribute to their virulence through largely uncharacterized mechanisms. Morphologic changes in the plasma membrane of cells exposed to these toxins include their sequestration into cholesterol-enriched surface protrusions, which can be shed into the extracellular space, suggesting an intrinsic cellular defense mechanism3,4. This process occurs on all cells in the absence of metabolic activity, and can be visualized using EM after chemical fixation4. In immune cells such as macrophages that mediate inflammation in response to toxin exposure, induced membrane vesicles are suggested to contain cytokines of the IL-1 family and may be responsible both for shedding toxin and disseminating these pro-inflammatory cytokines5,6,7. A link between IL-1β release and a specific type of cell death, termed pyroptosis has been suggested, as both are caspase-1 dependent processes8. To sort out the complexities of this macrophage response, which includes toxin binding, shedding of membrane vesicles, cytokine release, and potentially cell death, we have developed labeling techniques and fluorescence microscopy methods that allow for real time visualization of toxin-cell interactions, including measurements of dysfunction and death (Figure 1). Use of live cell imaging is necessary due to limitations in other techniques. Biochemical approaches cannot resolve effects occurring in individual cells, while flow cytometry does not offer high resolution, real-time visualization of individual cells. The methods described here can be applied to kinetic analysis of responses induced by other stimuli involving complex phenotypic changes in cells.
Immunology, Issue 68, Cellular Biology, Physiology, streptolysin O, pore-forming toxin, cholesterol-dependent cytolysin, live cell imaging, fluorescence microscopy
Play Button
Antigens Protected Functional Red Blood Cells By The Membrane Grafting Of Compact Hyperbranched Polyglycerols
Authors: Rafi Chapanian, Iren Constantinescu, Donald E. Brooks, Mark D. Scott, Jayachandran Kizhakkedathu.
Institutions: University of British Columbia , University of British Columbia , University of British Columbia , University of British Columbia .
Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia 1-3. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens 4), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs 4, 5. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen ,glucose, and ions3. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers 6, 7, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane 8, 9 and mask RBC surface antigens10, 11.
Immunology, Issue 71, Bioengineering, Pathology, Chemistry, Biochemistry, Hematology, polymers, Blood transfusion, surface antigens, antigen camouflage, RBC modification, hyperbranched polyglycerol, HPG, red blood cells, RBC, whole blood, flow cytometry
Play Button
Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs
Authors: Brian C. Evans, Christopher E. Nelson, Shann S. Yu, Kelsey R. Beavers, Arnold J. Kim, Hongmei Li, Heather M. Nelson, Todd D. Giorgio, Craig L. Duvall.
Institutions: Vanderbilt University, Vanderbilt University, Vanderbilt University, Vanderbilt University Medical Center, Vanderbilt University, Vanderbilt University.
Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems. In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8.
Immunology, Issue 73, Cellular Biology, Medicine, Biomedical Engineering, Bioengineering, Cancer Biology, Molecular Biology, Erythrocytes, Endosomes, Small Interfering RNA, Gene Therapy, Nanomedicine, Gene delivery, Nanoparticles, Endosome Escape, Intracellular Trafficking, Cytosolic Drug Delivery, red blood cells, assay
Play Button
High-throughput Functional Screening using a Homemade Dual-glow Luciferase Assay
Authors: Jessica M. Baker, Frederick M. Boyce.
Institutions: Massachusetts General Hospital.
We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest.
Cellular Biology, Issue 88, Luciferases, Gene Transfer Techniques, Transfection, High-Throughput Screening Assays, Transfections, Robotics
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.