JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Dynamics of Circulating ?? T Cell Activity in an Immunocompetent Mouse Model of High-Grade Glioma.
PUBLISHED: 05-09-2015
Human ?? T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating ?? T cell count, phenotype, V?/V? repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10-12 post-injection and at end stage. Circulating ?? T cells transiently increased and upregulated Annexin V expression at post-tumor day 10-12 followed by a dramatic decline in ?? T cell count at end stage. T cell receptor repertoire showed no changes in V?1, V?4, V?7 or V?1 subsets from controls at post-tumor day 10-12 or at end stage except for an end-stage increase in the V?4 population. Approximately 12% of ?? T cells produced IFN-?. IL-17 and IL-4 producing ?? T cells were not detected. Tumor progression was the same in TCR?-/- C57BL/6 mice as that observed in WT mice, suggesting that ?? T cells exerted neither a regulatory nor a sustainable cytotoxic effect on the tumor. WT mice that received an intracranial injection of ?? T cells 15m following tumor placement showed evidence of local tumor growth inhibition but this was insufficient to confer a survival advantage over untreated controls. Taken together, our findings suggest that an early nonspecific proliferation of ?? T cells followed by their depletion occurs in mice implanted with syngeneic GL261 gliomas. The mechanism by which ?? T cell expansion occurs remains a subject for further investigation of the mechanisms responsible for this immune response in the setting of high-grade glioma.
Authors: Ed Lim, Kshitij D Modi, JaeBeom Kim.
Published: 04-29-2009
4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
23 Related JoVE Articles!
Play Button
Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry
Authors: Laura A. Hasselbach, Susan M. Irtenkauf, Nancy W. Lemke, Kevin K. Nelson, Artem D. Berezovsky, Enoch T. Carlton, Andrea D. Transou, Tom Mikkelsen, Ana C. deCarvalho.
Institutions: Henry Ford Hospital.
Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.
Medicine, Issue 83, Primary Cell Culture, animal models, Nervous System Diseases, Neoplasms, glioblastoma, neurosphere, surgical specimens, long-term self-renewal
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
An Orthotopic Glioblastoma Mouse Model Maintaining Brain Parenchymal Physical Constraints and Suitable for Intravital Two-photon Microscopy
Authors: Clément Ricard, Fabio Stanchi, Geneviève Rougon, Franck Debarbieux.
Institutions: Aix Marseille University, European Research Center for Medical Imaging, Campus de la Timone, KU Leuven Campus Gasthuisberg.
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors with no curative treatments available to date. Murine models of this pathology rely on the injection of a suspension of glioma cells into the brain parenchyma following incision of the dura-mater. Whereas the cells have to be injected superficially to be accessible to intravital two-photon microscopy, superficial injections fail to recapitulate the physiopathological conditions. Indeed, escaping through the injection tract most tumor cells reach the extra-dural space where they expand abnormally fast in absence of mechanical constraints from the parenchyma. Our improvements consist not only in focally implanting a glioma spheroid rather than injecting a suspension of glioma cells in the superficial layers of the cerebral cortex but also in clogging the injection site by a cross-linked dextran gel hemi-bead that is glued to the surrounding parenchyma and sealed to dura-mater with cyanoacrylate. Altogether these measures enforce the physiological expansion and infiltration of the tumor cells inside the brain parenchyma. Craniotomy was finally closed with a glass window cemented to the skull to allow chronic imaging over weeks in absence of scar tissue development. Taking advantage of fluorescent transgenic animals grafted with fluorescent tumor cells we have shown that the dynamics of interactions occurring between glioma cells, neurons (e.g. Thy1-CFP mice) and vasculature (highlighted by an intravenous injection of a fluorescent dye) can be visualized by intravital two-photon microscopy during the progression of the disease. The possibility to image a tumor at microscopic resolution in a minimally compromised cerebral environment represents an improvement of current GBM animal models which should benefit the field of neuro-oncology and drug testing.
Medicine, Issue 86, Glioblastoma multiforme, intravital two-photon imaging, animal model, chronic cranial window, brain tumors, neuro-oncology.
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care
Authors: Katherine Riccione, Carter M. Suryadevara, David Snyder, Xiuyu Cui, John H. Sampson, Luis Sanchez-Perez.
Institutions: Duke University, Duke University, Duke University.
Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.
Immunology, Issue 96, Tumor immunotherapy, glioblastoma, chimeric antigen receptor, adoptive transfer, temozolomide, radiotherapy
Play Button
Radial Mobility and Cytotoxic Function of Retroviral Replicating Vector Transduced, Non-adherent Alloresponsive T Lymphocytes
Authors: Kate L. Erickson, Michelle J. Hickey, Yuki Kato, Colin C. Malone, Geoffrey C. Owens, Robert M. Prins, Linda M. Liau, Noriyuki Kasahara, Carol A. Kruse.
Institutions: UCLA David Geffen School of Medicine, UCLA David Geffen School of Medicine, UCLA David Geffen School of Medicine, UCLA David Geffen School of Medicine, UCLA David Geffen School of Medicine.
We report a novel adaptation of the Radial Monolayer Cell Migration assay, first reported to measure the radial migration of adherent tumor cells on extracellular matrix proteins, for measuring the motility of fluorescently-labeled, non-adherent human or murine effector immune cells. This technique employs a stainless steel manifold and 10-well Teflon slide to focally deposit non-adherent T cells into wells prepared with either confluent tumor cell monolayers or extracellular matrix proteins. Light and/or multi-channel fluorescence microscopy is used to track the movement and behavior of the effector cells over time. Fluorescent dyes and/or viral vectors that code for fluorescent transgenes are used to differentially label the cell types for imaging. This method is distinct from similar-type in vitro assays that track horizontal or vertical migration/invasion utilizing slide chambers, agar or transwell plates. The assay allows detailed imaging data to be collected with different cell types distinguished by specific fluorescent markers; even specific subpopulations of cells (i.e., transduced/nontransduced) can be monitored. Surface intensity fluorescence plots are generated using specific fluorescence channels that correspond to the migrating cell type. This allows for better visualization of the non-adherent immune cell mobility at specific times. It is possible to gather evidence of other effector cell functions, such as cytotoxicity or transfer of viral vectors from effector to target cells, as well. Thus, the method allows researchers to microscopically document cell-to-cell interactions of differentially-labeled, non-adherent with adherent cells of various types. Such information may be especially relevant in the assessment of biologically-manipulated or activated immune cell types, where visual proof of functionality is desired with tumor target cells before their use for cancer therapy.
Immunology, Issue 96, non-adherent cell migration, fluorescence microscopy, cell sedimentation manifold, allogeneic CTL, monolayer, T cell, extracellular matrix, gliom
Play Button
Transposon Mediated Integration of Plasmid DNA into the Subventricular Zone of Neonatal Mice to Generate Novel Models of Glioblastoma
Authors: Anda-Alexandra Calinescu, Felipe Javier Núñez, Carl Koschmann, Bradley L. Kolb, Pedro R. Lowenstein, Maria G. Castro.
Institutions: University of Michigan School of Medicine, University of Michigan School of Medicine, University of Michigan.
An urgent need exists to test the contribution of new genes to the pathogenesis and progression of human glioblastomas (GBM), the most common primary brain tumor in adults with dismal prognosis. New potential therapies are rapidly emerging from the bench and require systematic testing in experimental models which closely reproduce the salient features of the human disease. Herein we describe in detail a method to induce new models of GBM with transposon-mediated integration of plasmid DNA into cells of the subventricular zone of neonatal mice. We present a simple way to clone new transposons amenable for genomic integration using the Sleeping Beauty transposon system and illustrate how to monitor plasmid uptake and disease progression using bioluminescence, histology and immuno-histochemistry. We also describe a method to create new primary GBM cell lines. Ideally, this report will allow further dissemination of the Sleeping Beauty transposon system among brain tumor researchers, leading to an in depth understanding of GBM pathogenesis and progression and to the timely design and testing of effective therapies for patients.
Medicine, Issue 96, Glioblastoma models, Sleeping Beauty transposase, subventricular zone, neonatal mice, cloning of novel transposons, genomic integration, GBM histology, GBM neurospheres.
Play Button
Coculture System with an Organotypic Brain Slice and 3D Spheroid of Carcinoma Cells
Authors: Han-Ning Chuang, Raphaela Lohaus, Uwe-Karsten Hanisch, Claudia Binder, Faramarz Dehghani, Tobias Pukrop.
Institutions: University of Göttingen, University of Göttingen, University of Halle.
Patients with cerebral metastasis of carcinomas have a poor prognosis. However, the process at the metastatic site has barely been investigated, in particular the role of the resident (stromal) cells. Studies in primary carcinomas demonstrate the influence of the microenvironment on metastasis, even on prognosis1,2. Especially the tumor associated macrophages (TAM) support migration, invasion and proliferation3. Interestingly, the major target sites of metastasis possess tissue-specific macrophages, such as Kupffer cells in the liver or microglia in the CNS. Moreover, the metastatic sites also possess other tissue-specific cells, like astrocytes. Recently, astrocytes were demonstrated to foster proliferation and persistence of cancer cells4,5. Therefore, functions of these tissue-specific cell types seem to be very important in the process of brain metastasis6,7. Despite these observations, however, up to now there is no suitable in vivo/in vitro model available to directly visualize glial reactions during cerebral metastasis formation, in particular by bright field microscopy. Recent in vivo live imaging of carcinoma cells demonstrated their cerebral colonization behavior8. However, this method is very laborious, costly and technically complex. In addition, these kinds of animal experiments are restricted to small series and come with a substantial stress for the animals (by implantation of the glass plate, injection of tumor cells, repetitive anaesthesia and long-term fixation). Furthermore, in vivo imaging is thus far limited to the visualization of the carcinoma cells, whereas interactions with resident cells have not yet been illustrated. Finally, investigations of human carcinoma cells within immunocompetent animals are impossible8. For these reasons, we established a coculture system consisting of an organotypic mouse brain slice and epithelial cells embedded in matrigel (3D cell sphere). The 3D carcinoma cell spheres were placed directly next to the brain slice edge in order to investigate the invasion of the neighboring brain tissue. This enables us to visualize morphological changes and interactions between the glial cells and carcinoma cells by fluorescence and even by bright field microscopy. After the coculture experiment, the brain tissue or the 3D cell spheroids can be collected and used for further molecular analyses (e.g. qRT-PCR, IHC, or immunoblot) as well as for investigations by confocal microscopy. This method can be applied to monitor the events within a living brain tissue for days without deleterious effects to the brain slices. The model also allows selective suppression and replacement of resident cells by cells from a donor tissue to determine the distinct impact of a given genotype. Finally, the coculture model is a practicable alternative to in vivo approaches when testing targeted pharmacological manipulations.
Medicine, Issue 80, Brain Tissue, Cancer Cells, Nervous System, Neoplasms, Therapeutics, Organotypic brain slice, coculture, tumor invasion, cerebral colonization, brain metastasis, microglia, astrocyte, live-imaging
Play Button
Primary Orthotopic Glioma Xenografts Recapitulate Infiltrative Growth and Isocitrate Dehydrogenase I Mutation
Authors: J. Geraldo Valadez, Anuraag Sarangi, Christopher J. Lundberg, Michael K. Cooper.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, Veteran Affairs TVHS.
Malignant gliomas constitute a heterogeneous group of highly infiltrative glial neoplasms with distinct clinical and molecular features. Primary orthotopic xenografts recapitulate the histopathological and molecular features of malignant glioma subtypes in preclinical animal models. To model WHO grades III and IV malignant gliomas in transplantation assays, human tumor cells are xenografted into an orthotopic site, the brain, of immunocompromised mice. In contrast to secondary xenografts that utilize cultured tumor cells, human glioma cells are dissociated from resected specimens and transplanted without prior passage in tissue culture to generate primary xenografts. The procedure in this report details tumor sample preparation, intracranial transplantation into immunocompromised mice, monitoring for tumor engraftment and tumor harvesting for subsequent passage into recipient animals or analysis. Tumor cell preparation requires 2 hr and surgical procedure requires 20 min/animal.
Medicine, Issue 83, Glioma, Malignant glioma, primary orthotopic xenograft, isocitrate dehydrogenase
Play Button
Establishing Intracranial Brain Tumor Xenografts With Subsequent Analysis of Tumor Growth and Response to Therapy using Bioluminescence Imaging
Authors: Tomoko Ozawa, C. David James.
Institutions: University of California, San Francisco - UCSF.
Transplantation models using human brain tumor cells have served an essential function in neuro-oncology research for many years. In the past, the most commonly used procedure for human tumor xenograft establishment consisted of the collection of cells from culture flasks, followed by the subcutaneous injection of the collected cells in immunocompromised mice. Whereas this approach still sees frequent use in many laboratories, there has been a significant shift in emphasis over the past decade towards orthotopic xenograft establishment, which, in the instance of brain tumors, requires tumor cell injection into appropriate neuroanatomical structures. Because intracranial xenograft establishment eliminates the ability to monitor tumor growth through direct measurement, such as by use of calipers, the shift in emphasis towards orthotopic brain tumor xenograft models has necessitated the utilization of non-invasive imaging for assessing tumor burden in host animals. Of the currently available imaging methods, bioluminescence monitoring is generally considered to offer the best combination of sensitivity, expediency, and cost. Here, we will demonstrate procedures for orthotopic brain tumor establishment, and for monitoring tumor growth and response to treatment when testing experimental therapies.
Neuroscience, Issue 41, brain tumors, implantation, xenograft, athymic mice, bioluminescence imaging, therapeutic testing
Play Button
Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model
Authors: Mary Zimmerman, Xiaolin Hu, Kebin Liu.
Institutions: Medical College of Georgia.
Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.
Immunology, Issue 45, Metastasis, CTL adoptive transfer, Lung, Tumor Immunology
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
Play Button
An Orthotopic Model of Murine Bladder Cancer
Authors: Georgina L. Dobek, W. T. Godbey.
Institutions: Tulane University, Tulane University.
In this straightforward procedure, bladder tumors are established in female C57 mice through the use of catheterization, local cauterization, and subsequent cell adhesion. After their bladders are transurethrally catheterized and drained, animals are again catheterized to permit insertion of a platinum wire into bladders without damaging the urethra or bladder. The catheters are made of Teflon to serve as an insulator for the wire, which will conduct electrical current into the bladder to create a burn injury. An electrocautery unit is used to deliver 2.5W to the exposed end of the wire, burning away extracellular layers and providing attachment sites for carcinoma cells that are delivered in suspension to the bladder through a subsequent catheterization. Cells remain in the bladder for 90 minutes, after which the catheters are removed and the bladders allowed to drain naturally. The development of tumor is monitored via ultrasound. Specific attention is paid to the catheterization technique in the accompanying video.
Medicine, Issue 48, Bladder tumor, orthotopic, mouse, ultrasound
Play Button
Monitoring Tumor Metastases and Osteolytic Lesions with Bioluminescence and Micro CT Imaging
Authors: Ed Lim, Kshitij Modi, Anna Christensen, Jeff Meganck, Stephen Oldfield, Ning Zhang.
Institutions: Caliper Life Sciences.
Following intracardiac delivery of MDA-MB-231-luc-D3H2LN cells to Nu/Nu mice, systemic metastases developed in the injected animals. Bioluminescence imaging using IVIS Spectrum was employed to monitor the distribution and development of the tumor cells following the delivery procedure including DLIT reconstruction to measure the tumor signal and its location. Development of metastatic lesions to the bone tissues triggers osteolytic activity and lesions to tibia and femur were evaluated longitudinally using micro CT. Imaging was performed using a Quantum FX micro CT system with fast imaging and low X-ray dose. The low radiation dose allows multiple imaging sessions to be performed with a cumulative X-ray dosage far below LD50. A mouse imaging shuttle device was used to sequentially image the mice with both IVIS Spectrum and Quantum FX achieving accurate animal positioning in both the bioluminescence and CT images. The optical and CT data sets were co-registered in 3-dimentions using the Living Image 4.1 software. This multi-mode approach allows close monitoring of tumor growth and development simultaneously with osteolytic activity.
Medicine, Issue 50, osteolytic lesions, micro CT, tumor, bioluminescence, in vivo, imaging, IVIS, luciferase, low dose, co-registration, 3D reconstruction
Play Button
A Simple Guide Screw Method for Intracranial Xenograft Studies in Mice
Authors: Jacqueline F. Donoghue, Oliver Bogler, Terrance G. Johns.
Institutions: Monash Institute of Medical Research , University of Texas .
The grafting of human tumor cells into the brain of immunosuppressed mice is an established method for the study of brain cancers including glioblastoma (glioma) and medulloblastoma. The widely used stereotactic approach only allows for the injection of a single animal at a time, is labor intensive and requires highly specialized equipment. The guide screw method, initially developed by Lal et al.,1 was developed to eliminate cumbersome stereotactic procedures. We now describe a modified guide screw approach that is rapid and exceptionally safe; both of which are critical ethical considerations. Notably, our procedure now incorporates an infusion pump that allows up to 10 animals to be simultaneously injected with tumor cells. To demonstrate the utility of this procedure, we established human U87MG glioma cells as intracranial xenografts in mice, which were then treated with AMG102; a fully human antibody directed to HGF/scatter factor currently undergoing clinical evaluation2-5. Systemic injection of AMG102 significantly prolonged the survival of all mice with intracranial U87MG xenografts and resulted in a number of complete cures. This study demonstrates that the guide screw method is an inexpensive, highly reproducible approach for establishing intracranial xenografts. Furthermore, it provides a relevant physiological model for validating novel therapeutic strategies for the treatment of brain cancers.
Medicine, Issue 55, Neuroscience, Intracranial, Guide Screw, Xenografts, Glioma, Mouse
Play Button
Combination Radiotherapy in an Orthotopic Mouse Brain Tumor Model
Authors: Tamalee R. Kramp, Kevin Camphausen.
Institutions: National Cancer Institute.
Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors1. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment2. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure3. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without radiation.
Medicine, Issue 61, Neuroscience, mouse, intracranial, orthotopic, radiation, glioblastoma
Play Button
Intracranial Implantation with Subsequent 3D In Vivo Bioluminescent Imaging of Murine Gliomas
Authors: Mohammed G. Abdelwahab, Tejas Sankar, Mark C. Preul, Adrienne C. Scheck.
Institutions: Barrow Neurological Institute of St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute of St. Joseph’s Hospital and Medical Center.
The mouse glioma 261 (GL261) is recognized as an in vivo model system that recapitulates many of the features of human glioblastoma multiforme (GBM). The cell line was originally induced by intracranial injection of 3-methyl-cholantrene into a C57BL/6 syngeneic mouse strain 1; therefore, immunologically competent C57BL/6 mice can be used. While we use GL261, the following protocol can be used for the implantation and monitoring of any intracranial mouse tumor model. GL261 cells were engineered to stably express firefly luciferase (GL261-luc). We also created the brighter GL261-luc2 cell line by stable transfection of the luc2 gene expressed from the CMV promoter. C57BL/6-cBrd/cBrd/Cr mice (albino variant of C57BL/6) from the National Cancer Institute, Frederick, MD were used to eliminate the light attenuation caused by black skin and fur. With the use of albino C57BL/6 mice; in vivo imaging using the IVIS Spectrum in vivo imaging system is possible from the day of implantation (Caliper Life Sciences, Hopkinton, MA). The GL261-luc and GL261-luc2 cell lines showed the same in vivo behavior as the parental GL261 cells. Some of the shared histological features present in human GBMs and this mouse model include: tumor necrosis, pseudopalisades, neovascularization, invasion, hypercellularity, and inflammation 1. Prior to implantation animals were anesthetized by an intraperitoneal injection of ketamine (50 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.05 mg/kg), placed in a stereotactic apparatus and an incision was made with a scalpel over the cranial midline. A burrhole was made 0.1mm posterior to the bregma and 2.3mm to the right of the midline. A needle was inserted to a depth of 3mm and withdrawn 0.4mm to a depth of 2.6mm. Two μl of GL261-luc or GL261-luc2 cells (107 cells/ml) were infused over the course of 3 minutes. The burrhole was closed with bonewax and the incision was sutured. Following stereotactic implantation the bioluminescent cells are detectable from the day of implantation and the tumor can be analyzed using the 3D image reconstruction feature of the IVIS Spectrum instrument. Animals receive a subcutaneous injection of 150μg luciferin /kg body weight 20 min prior to imaging. Tumor burden is quantified using mean tumor bioluminescence over time. Tumor-bearing mice were observed daily to assess morbidity and were euthanized when one or more of the following symptoms are present: lethargy, failure to ambulate, hunched posture, failure to groom, anorexia resulting in >10% loss of weight. Tumors were evident in all of the animals on necropsy.
Medicine, Issue 57, glioma, mouse model, bioluminescence, in vivo imaging, intracranial implantation
Play Button
Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes
Authors: Fengyang Lei, Rizwanul Haque, Xiaofang Xiong, Jianxun Song.
Institutions: Pennsylvania State University College of Medicine.
Adoptive cell transfer (ACT) of antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies 1. CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines 2-7. However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases 8-10. However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic 11-13, HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture 14-16. Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.
Stem Cell Biology, Issue 63, Immunology, T cells, induced pluripotent stem cells, differentiation, Notch signaling, T cell receptor, adoptive cell transfer
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.