JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.
.
PLoS ONE
PUBLISHED: 05-12-2015
Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS) under the murine Thy1 (mThy1) promoter, a model known to have a particularly high tg expression associated with impaired olfaction.
ABSTRACT
24 Related JoVE Articles!
Play Button
Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
Authors: M. Rezaul Karim, Keita Endo, Adrian W Moore, Hiroaki Taniguchi.
Institutions: Doshisha University, RIKEN Brain Science Institute, RIKEN Brain Science Institute.
Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.
Neuroscience, Issue 87, Developmental biology, Drosophila, Whole mount immunolabeling, olfactory receptor neurons, antennae, sensory organ
51245
Play Button
Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex
Authors: Louis-Jan Pilaz, Debra L. Silver.
Institutions: Duke University Medical Center, Duke University Medical Center.
Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.
Neuroscience, Issue 88, mitosis, radial glial cells, developing cortex, neural progenitors, brain slice, live imaging
51298
Play Button
Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting
Authors: Francisco-Jose Fernandez-Gomez, Fanny Jumeau, Maxime Derisbourg, Sylvie Burnouf, Hélène Tran, Sabiha Eddarkaoui, Hélène Obriot, Virginie Dutoit-Lefevre, Vincent Deramecourt, Valérie Mitchell, Didier Lefranc, Malika Hamdane, David Blum, Luc Buée, Valérie Buée-Scherrer, Nicolas Sergeant.
Institutions: Inserm UMR 837, CHRU-Lille, Faculté de Médecine - Pôle Recherche, CHRU-Lille.
Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets.
Neuroscience, Issue 86, proteomics, neurodegeneration, 2DE, human and mice brain tissue, fluorescence, immunoblotting. Abbreviations: 2DE (two-dimensional gel electrophoresis), 2D-DIGE (two-dimensional fluorescence difference gel electrophoresis), mini-2DE (mini 2DE immunoblotting),IPG (Immobilized pH Gradients), IEF (isoelectrofocusing), AD (Alzheimer´s disease)
51339
Play Button
Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration
Authors: Rebecca Schmidt, Tanja Beil, Uwe Strähle, Sepand Rastegar.
Institutions: Karlsruhe Institute of Technology.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.
Neuroscience, Issue 90, zebrafish, adult neurogenesis, telencephalon regeneration, stab wound, central nervous system, adult neural stem cell
51753
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Olfactory Assays for Mouse Models of Neurodegenerative Disease
Authors: Andrew M. Lehmkuhl, Emily R. Dirr, Sheila M. Fleming.
Institutions: University of Cincinnati, University of Cincinnati, Wright State University.
In many neurodegenerative diseases and particularly in Parkinson’s disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson’s disease as well as in testing potential disease-modifying therapies.
Neuroscience, Issue 90, olfaction, mouse, Parkinson’s disease, detection, discrimination, sniffing
51804
Play Button
Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans
Authors: Carmen I. Nussbaum-Krammer, Mário F. Neto, Renée M. Brielmann, Jesper S. Pedersen, Richard I. Morimoto.
Institutions: Northwestern University.
Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans.
Cellular Biology, Issue 95, Caenorhabditis elegans, neurodegenerative diseases, protein misfolding diseases, prion-like spreading, cell-to-cell transmission, protein aggregation, non-cell autonomous toxicity, proteostasis
52321
Play Button
Organotypic Slice Cultures for Studies of Postnatal Neurogenesis
Authors: Adam J. Mosa, Sabrina Wang, Yao Fang Tan, J. Martin Wojtowicz.
Institutions: University of Toronto, National Yang-Ming University, Taipei City Hospital.
Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research.
Developmental Biology, Issue 97, Adult neurogenesis, Organotypic cultures, hippocampus, BrdU, CldU, immunohistochemistry, fluorescence microscopy, pharmacology
52353
Play Button
Immunohistochemistry and Multiple Labeling with Antibodies from the Same Host Species to Study Adult Hippocampal Neurogenesis
Authors: Anne Ansorg, Katja Bornkessel, Otto W. Witte, Anja Urbach.
Institutions: Jena University Hospital.
Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.
Neuroscience, Issue 98, Immunohistochemistry, immunofluorescence, antibodies, epitope retrieval, thymidine analogs, 5-Chloro-2′-deoxyuridine (CldU), 5-Iodo-2′-deoxyuridine (IdU), 5-Bromo-2′-deoxyuridine (BrdU), dentate gyrus, adult neurogenesis, free-floating, hippocampal progenitor cells
52551
Play Button
Novel Atomic Force Microscopy Based Biopanning for Isolation of Morphology Specific Reagents against TDP-43 Variants in Amyotrophic Lateral Sclerosis
Authors: Stephanie M. Williams, Lalitha Venkataraman, Huilai Tian, Galam Khan, Brent T. Harris, Michael R. Sierks.
Institutions: Arizona State University, Georgetown University Medical Center, Georgetown University Medical Center.
Because protein variants play critical roles in many diseases including TDP-43 in Amyotrophic Lateral Sclerosis (ALS), alpha-synuclein in Parkinson’s disease and beta-amyloid and tau in Alzheimer’s disease, it is critically important to develop morphology specific reagents that can selectively target these disease-specific protein variants to study the role of these variants in disease pathology and for potential diagnostic and therapeutic applications. We have developed novel atomic force microscopy (AFM) based biopanning techniques that enable isolation of reagents that selectively recognize disease-specific protein variants. There are two key phases involved in the process, the negative and positive panning phases. During the negative panning phase, phages that are reactive to off-target antigens are eliminated through multiple rounds of subtractive panning utilizing a series of carefully selected off-target antigens. A key feature in the negative panning phase is utilizing AFM imaging to monitor the process and confirm that all undesired phage particles are removed. For the positive panning phase, the target antigen of interest is fixed on a mica surface and bound phages are eluted and screened to identify phages that selectively bind the target antigen. The target protein variant does not need to be purified providing the appropriate negative panning controls have been used. Even target protein variants that are only present at very low concentrations in complex biological material can be utilized in the positive panning step. Through application of this technology, we acquired antibodies to protein variants of TDP-43 that are selectively found in human ALS brain tissue. We expect that this protocol should be applicable to generating reagents that selectively bind protein variants present in a wide variety of different biological processes and diseases.
Bioengineering, Issue 96, Amyotrophic Lateral Sclerosis, TDP-43, Biopanning, Atomic Force Microscopy, scFv, Neurodegenerative diseases
52584
Play Button
Nucleofection of Rodent Neuroblasts to Study Neuroblast Migration In vitro
Authors: Katarzyna Falenta, Sangeetha Gajendra, Martina Sonego, Patrick Doherty, Giovanna Lalli.
Institutions: King's College London, King's College London.
The subventricular zone (SVZ) located in the lateral wall of the lateral ventricles plays a fundamental role in adult neurogenesis. In this restricted area of the brain, neural stem cells proliferate and constantly generate neuroblasts that migrate tangentially in chains along the rostral migratory stream (RMS) to reach the olfactory bulb (OB). Once in the OB, neuroblasts switch to radial migration and then differentiate into mature neurons able to incorporate into the preexisting neuronal network. Proper neuroblast migration is a fundamental step in neurogenesis, ensuring the correct functional maturation of newborn neurons. Given the ability of SVZ-derived neuroblasts to target injured areas in the brain, investigating the intracellular mechanisms underlying their motility will not only enhance the understanding of neurogenesis but may also promote the development of neuroregenerative strategies. This manuscript describes a detailed protocol for the transfection of primary rodent RMS postnatal neuroblasts and the analysis of their motility using a 3D in vitro migration assay recapitulating their mode of migration observed in vivo. Both rat and mouse neuroblasts can be quickly and efficiently transfected via nucleofection with either plasmid DNA, small hairpin (sh)RNA or short interfering (si)RNA oligos targeting genes of interest. To analyze migration, nucleofected cells are reaggregated in 'hanging drops' and subsequently embedded in a three-dimensional matrix. Nucleofection per se does not significantly impair the migration of neuroblasts. Pharmacological treatment of nucleofected and reaggregated neuroblasts can also be performed to study the role of signaling pathways involved in neuroblast migration.
Neuroscience, Issue 81, Cellular Biology, Cell Migration Assays, Transfection, Neurogenesis, subventricular zone (SVZ), neural stem cells, rostral migratory stream (RMS), neuroblast, 3D migration assay, nucleofection
50989
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
50960
Play Button
In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices
Authors: Martina Sonego, Ya Zhou, Madeleine Julie Oudin, Patrick Doherty, Giovanna Lalli.
Institutions: King's College London, Massachusetts Institute of Technology.
The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair.
Neuroscience, Issue 81, Time-Lapse Imaging, Cell Migration Assays, Electroporation, neurogenesis, neuroblast migration, neural stem cells, subventricular zone (SVZ), rostral migratory stream (RMS), neonatal mouse pups, electroporation, time-lapse imaging, brain slice culture, cell tracking
50905
Play Button
Application of a C. elegans Dopamine Neuron Degeneration Assay for the Validation of Potential Parkinson's Disease Genes
Authors: Laura A. Berkowitz, Shusei Hamamichi, Adam L. Knight, Adam J. Harrington, Guy A. Caldwell, Kim A. Caldwell.
Institutions: University of Alabama.
Improvements to the diagnosis and treatment of Parkinson's disease (PD) are dependent upon knowledge about susceptibility factors that render populations at risk. In the process of attempting to identify novel genetic factors associated with PD, scientists have generated many lists of candidate genes, polymorphisms, and proteins that represent important advances, but these leads remain mechanistically undefined. Our work is aimed toward significantly narrowing such lists by exploiting the advantages of a simple animal model system. While humans have billions of neurons, the microscopic roundworm Caenorhabditis elegans has precisely 302, of which only eight produce dopamine (DA) in hemaphrodites. Expression of a human gene encoding the PD-associated protein, alpha-synuclein, in C. elegans DA neurons results in dosage and age-dependent neurodegeneration. Worms expressing human alpha-synuclein in DA neurons are isogenic and express both GFP and human alpha-synuclein under the DA transporter promoter (Pdat-1). The presence of GFP serves as a readily visualized marker for following DA neurodegeneration in these animals. We initially demonstrated that alpha-synuclein-induced DA neurodegeneration could be rescued in these animals by torsinA, a protein with molecular chaperone activity 1. Further, candidate PD-related genes identified in our lab via large-scale RNAi screening efforts using an alpha-synuclein misfolding assay were then over-expressed in C. elegans DA neurons. We determined that five of seven genes tested represented significant candidate modulators of PD as they rescued alpha-synuclein-induced DA neurodegeneration 2. Additionally, the Lindquist Lab (this issue of JoVE) has performed yeast screens whereby alpha-synuclein-dependent toxicity is used as a readout for genes that can enhance or suppress cytotoxicity. We subsequently examined the yeast candidate genes in our C. elegans alpha-synuclein-induced neurodegeneration assay and successfully validated many of these targets 3, 4. Our methodology involves generation of a C. elegans DA neuron-specific expression vector using recombinational cloning of candidate gene cDNAs under control of the Pdat-1 promoter. These plasmids are then microinjected in wild-type (N2) worms, along with a selectable marker for successful transformation. Multiple stable transgenic lines producing the candidate protein in DA neurons are obtained and then independently crossed into the alpha-synuclein degenerative strain and assessed for neurodegeneration, at both the animal and individual neuron level, over the course of aging.
Neuroscience, Issue 17, C. elegans, Parkinson's disease, neuroprotection, alpha-synuclein, Translational Research
835
Play Button
Studying the Integration of Adult-born Neurons
Authors: Yan Gu, Stephen Janoschka, Shaoyu Ge.
Institutions: State University of New York at Stony Brook.
Neurogenesis occurs in adult mammalian brains in the sub-ventricular zone (SVZ) of the lateral ventricle and in the sub-granular zone (SGZ) of the hippocampal dentate gyrus throughout life. Previous reports have shown that adult hippocampal neurogenesis is associated with diverse brain disorders, including epilepsy, schizophrenia, depression and anxiety (1). Deciphering the process of normal and aberrant adult-born neuron integration may shed light on the etiology of these diseases and inform the development of new therapies. SGZ adult neurogenesis mirrors embryonic and post-natal neuronal development, including stages of fate specification, migration, synaptic integration, and maturation. However, full integration occurs over a prolonged, 6-week period. Initial synaptic input to adult-born SGZ dentate granule cells (DGCs) is GABAergic, followed by glutamatergic input at 14 days (2). The specific factors which regulate circuit formation of adult-born neurons in the dentate gyrus are currently unknown. Our laboratory uses a replication-deficient retroviral vector based on the Moloney murine leukemia virus to deliver fluorescent proteins and hypothesized regulatory genes to these proliferating cells. This viral technique provides high specificity and resolution for analysis of cell birth date, lineage, morphology, and synaptogenesis. A typical experiment often employs two or three viruses containing unique label, transgene, and promoter elements for single-cell analysis of a desired developmental process in vivo. The following protocol describes a method for analyzing functional newborn neuron integration using a single green (GFP) or red (dTomato) fluorescent protein retrovirus and patch-clamp electrophysiology.
Neuroscience, Issue 49, dentate gyrus, neurogenesis, newborn dentate granule cells, functional integration
2548
Play Button
Using Affordable LED Arrays for Photo-Stimulation of Neurons
Authors: Matthew Valley, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
Neuroscience, Issue 57, Adult neurogenesis, Channelrhodopsin, Neural stem cells, Plasticity, Synapses, Electrophysiology
3379
Play Button
Selective Viral Transduction of Adult-born Olfactory Neurons for Chronic in vivo Optogenetic Stimulation
Authors: Gabriel Lepousez, Mariana Alonso, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Local interneurons are continuously regenerated in the olfactory bulb of adult rodents1-3. In this process, called adult neurogenesis, neural stem cells in the walls of the lateral ventricle give rise to neuroblasts that migrate for several millimeters along the rostral migratory stream (RMS) to reach and incorporate into the olfactory bulb. To study the different steps and the impact of adult-born neuron integration into preexisting olfactory circuits, it is necessary to selectively label and manipulate the activity of this specific population of neurons. The recent development of optogenetic technologies offers the opportunity to use light to precisely activate this specific cohort of neurons without affecting surrounding neurons4,5. Here, we present a series of procedures to virally express Channelrhodopsin2(ChR2)-YFP in a temporally restricted cohort of neuroblasts in the RMS before they reach the olfactory bulb and become adult-born neurons. In addition, we show how to implant and calibrate a miniature LED for chronic in vivo stimulation of ChR2-expressing neurons.
Neuroscience, Issue 58, Olfactory bulb, Olfactory neurons, in vivo, viral transduction, mouse, LED
3380
Play Button
Time-lapse Imaging of Neuroblast Migration in Acute Slices of the Adult Mouse Forebrain
Authors: Jivan Khlghatyan, Armen Saghatelyan.
Institutions: Centre de Recherche Université Laval Robert-Giffard.
There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB)1. In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes2,3 using blood vessels as a structural support and a source of molecular factors required for migration4,5. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network1, 6. In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration7-10. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains.
Neuroscience, Issue 67, Molecular Biology, Medicine, Physiology, brain, migration, neuroblast, rostral migratory stream (RMS), blood vessels, subventricular zone (SVZ), olfactory bulb, real-time video imaging
4061
Play Button
Neonatal Subventricular Zone Electroporation
Authors: David M. Feliciano, Carlos A. Lafourcade, Angélique Bordey.
Institutions: Yale University School of Medicine .
Neural stem cells (NSCs) line the postnatal lateral ventricles and give rise to multiple cell types which include neurons, astrocytes, and ependymal cells1. Understanding the molecular pathways responsible for NSC self-renewal, commitment, and differentiation is critical for harnessing their unique potential to repair the brain and better understand central nervous system disorders. Previous methods for the manipulation of mammalian systems required the time consuming and expensive endeavor of genetic engineering at the whole animal level2. Thus, the vast majority of studies have explored the functions of NSC molecules in vitro or in invertebrates. Here, we demonstrate the simple and rapid technique to manipulate neonatal NPCs that is referred to as neonatal subventricular zone (SVZ) electroporation. Similar techniques were developed a decade ago to study embryonic NSCs and have aided studies on cortical development3,4 . More recently this was applied to study the postnatal rodent forebrain5-7. This technique results in robust labeling of SVZ NSCs and their progeny. Thus, postnatal SVZ electroporation provides a cost and time effective alternative for mammalian NSC genetic engineering.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Stem Cell Biology, Genetics, Neurogenesis, Growth and Development, Surgery, Subventricular Zone, Electroporation, Neural Stem Cells, NSC, subventricular zone, brain, DNA, injection, genetic engineering, neonatal pups, animal model
50197
Play Button
High-throughput Functional Screening using a Homemade Dual-glow Luciferase Assay
Authors: Jessica M. Baker, Frederick M. Boyce.
Institutions: Massachusetts General Hospital.
We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest.
Cellular Biology, Issue 88, Luciferases, Gene Transfer Techniques, Transfection, High-Throughput Screening Assays, Transfections, Robotics
50282
Play Button
Micromanipulation of Gene Expression in the Adult Zebrafish Brain Using Cerebroventricular Microinjection of Morpholino Oligonucleotides
Authors: Caghan Kizil, Anne Iltzsche, Jan Kaslin, Michael Brand.
Institutions: Cluster of Excellence (CRTD) and Biotechnology Center (BIOTEC) of the Technische Universität Dresden.
Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure.
Neurobiology, Issue 75, Neuroscience, Genetics, Molecular Biology, Cellular Biology, Developmental Biology, Biochemistry, Brain, Zebrafish, Morpholinos, Gene Knockdown Techniques, morpholino oligonucleotides, cerebroventricular microinjection, neurosciences, radial glial cells, microinjection, gene expression, Danio rerio, animal model
50415
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
50716
Play Button
Methods for the Modulation and Analysis of NF-κB-dependent Adult Neurogenesis
Authors: Darius Widera, Janine Müller, Yvonne Imielski, Peter Heimann, Christian Kaltschmidt, Barbara Kaltschmidt.
Institutions: University of Bielefeld, University of Bielefeld.
The hippocampus plays a pivotal role in the formation and consolidation of episodic memories, and in spatial orientation. Historically, the adult hippocampus has been viewed as a very static anatomical region of the mammalian brain. However, recent findings have demonstrated that the dentate gyrus of the hippocampus is an area of tremendous plasticity in adults, involving not only modifications of existing neuronal circuits, but also adult neurogenesis. This plasticity is regulated by complex transcriptional networks, in which the transcription factor NF-κB plays a prominent role. To study and manipulate adult neurogenesis, a transgenic mouse model for forebrain-specific neuronal inhibition of NF-κB activity can be used. In this study, methods are described for the analysis of NF-κB-dependent neurogenesis, including its structural aspects, neuronal apoptosis and progenitor proliferation, and cognitive significance, which was specifically assessed via a dentate gyrus (DG)-dependent behavioral test, the spatial pattern separation-Barnes maze (SPS-BM). The SPS-BM protocol could be simply adapted for use with other transgenic animal models designed to assess the influence of particular genes on adult hippocampal neurogenesis. Furthermore, SPS-BM could be used in other experimental settings aimed at investigating and manipulating DG-dependent learning, for example, using pharmacological agents.
Neuroscience, Issue 84, NF-κB, hippocampus, Adult neurogenesis, spatial pattern separation-Barnes maze, dentate gyrus, p65 knock-out mice
50870
Play Button
Detection of Disease-associated α-synuclein by Enhanced ELISA in the Brain of Transgenic Mice Overexpressing Human A53T Mutated α-synuclein
Authors: Dominique Bétemps, Jérémy Verchère, Anne-Laure Mougenot, Ingolf Lachmann, Eric Morignat, Emilie Antier, Latifa Lakhdar, Stéphane Legastelois, Thierry Baron.
Institutions: ANSES - French Agency for Food, Environmental and Occupational Health & Safety, Indicia Production, AJ Roboscreen GmbH, ANSES - French Agency for Food, Environmental and Occupational Health & Safety, ANSES - French Agency for Food, Environmental and Occupational Health & Safety.
In addition to established methods like Western blot, new methods are needed to quickly and easily quantify disease-associated α-synuclein (αSD) in experimental models of synucleopathies. A transgenic mouse line (M83) over-expressing the human A53T αS and spontaneously developing a dramatic clinical phenotype between eight and 22 months of age, characterized by symptoms including weight loss, prostration, and severe motor impairment, was used in this study. For molecular analyses of αSD (disease-associated αS) in these mice, an ELISA was designed to specifically quantify αSD in sick mice. Analysis of the central nervous system in this mouse model showed the presence of αSD mainly in the caudal brain regions and the spinal cord. There were no differences in αSD distribution between different experimental conditions leading to clinical disease, i.e., in uninoculated and normally aging transgenic mice and in mice inoculated with brain extracts from sick mice. The specific detection of αSD immunoreactivity using an antibody against Ser129 phosphorylated αS by ELISA essentially correlated with that obtained by Western blot and immunohistochemistry. Unexpectedly, similar results were observed with several other antibodies against the C-terminal part of αS. The propagation of αSD, suggesting the involvement of a “prion-like” mechanism, can thus be easily monitored and quantified in this mouse model using an ELISA approach.
Medicine, Issue 99, Parkinson's, dementia, alpha-synuclein, prion, mouse, transgenic, ELISA
52752
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.